
Dynamic Programming and Reinforcement Learning
Week 5a: Temporal Difference Algorithms & Q-Learning 2

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

16.05.22

■ Backward Induction (BI): For
finite horizon MDPs, make use of
the knowledge about the horizon.

■ Value Iteration (VI), Policy
Iteration (PI): For infinite
horizon MDPs, make use of full
knowledge about the process.
Events, state transitions, reward
function etc. are known to the
developer.

■ Approximate Dynamic
Programming (ADP): Still
assumes full knowledge, but
prioritizes states by their
occurrence in the simulation.

■ Finite Horizon MDPs: Have a
time T after which the process
ends. Knowledge about this can
drastically improve solution time
by using backward induction.

■ Infinite Horizon MDPs: Have no
fixed length, which makes BI
impossible. Require either VI, PI
or ADP to be solved successfully.

BI, VI, PI, ADP Finite Horizon vs. Infinite Horizon

Recap

Chart 2

1. Observe 𝑠!, choose 𝑎! according to the current
policy

2. Observe 𝑟! , 𝑠!"#, choose 𝑎!"# according to the
current policy

3. Update the Q-value estimate:

𝑄! 𝑠! , 𝑎! ← 𝜂!(𝑟! + 𝛾𝑄! 𝑠!"#, 𝑎!"# − 𝑄!(𝑠! , 𝑎!)) + 𝑄!(𝑠! , 𝑎!)
or

𝑄! 𝑠! , 𝑎! ← 𝜂!(𝑟! + 𝛾𝑄! 𝑠!"#, 𝑎!"#) + (1 − 𝜂!)𝑄!(𝑠! , 𝑎!)

4. Repeat from 1. with each new transition, reduce
𝜂! over time (for example 𝜂! =

#
!
)

SARSA

𝒔(𝟏) 𝒔(𝟐) 𝒔(𝟑) 𝒔(𝟒) …

𝒂(𝟏) 1.2 3.2 2.2 3.2
𝒂(𝟐) 1.1 3.1 6.2 5.2
𝒂(𝟑) 1.4 4.0 1.7 6.7
𝒂(𝟒) 2.8 0.2 4.3 0.2
…

Chart 3

𝑠 ! , 𝑎 " , 1, 𝑠 " , 𝑎($) , 𝛾 = 0.99
𝑡𝑎𝑟𝑔𝑒𝑡 ← 1 + 0.99 ∗ 4.0

1. Observe 𝑠!, choose 𝑎! according to the current policy
2. Observe 𝑟! , 𝑠!"# (𝑎!"# is not relevant here)
3. Update the Q-value estimate:

𝑄! 𝑠! , 𝑎! ← 𝜂!(𝑟! + 𝛾𝐦𝐚𝐱𝒂∈𝑨
𝑸𝒕 𝒔𝒕"𝟏, 𝒂 − 𝑄!(𝑠! , 𝑎!)) + 𝑄!(𝑠! , 𝑎!)

4. Repeat from 1. with each new transition, reduce 𝜂! over time (for
example 𝜂! =

#
!
)

Policy at each point in time can be 𝜖-greedy. Convergence is guaranteed
if all combinations of s and a are revisited in endless time.

What is the difference of the Q-values in comparison to SARSA?
Are we learning something different here?

Q-Learning

Chart 4

Overestimation Bias

Chart 5

𝒔(𝟏) 𝑎(!) → 0

𝒔(𝟏)

𝒂(𝟏) ?

Randomly initialized estimate Actual rewards

𝒔(𝟏)

𝒂(𝟏) 0

Problem
Q-learning shows the tendency to

overestimate Q-values.
This is caused by the max-operator.
This can be displayed in a theoretical

setup, but it is present in more
complex scenarios as well.

Solution
Keep second table for the Q-values,

alternate between updating both
tables.

Initialize 2 S/A-tables (𝑄(*) and 𝑄(#))!
Initialize marker for current table 𝑛 = 0

1. Observe 𝑠!, choose 𝑎! according to 𝜖-greedy based on 𝑄(,)

2. Observe 𝑟! , 𝑠!"#
3. Update the Q-value estimate:

𝑄!
(,) 𝑠! , 𝑎! ← 𝜂!(𝑟! + 𝛾𝑸𝒕

(𝟏-𝒏) 𝒔𝒕"𝟏, argmax
/∈0

𝑸𝒕
𝒏 (𝒔𝒕"𝟏, 𝒂) − 𝑄!

(,)(𝑠! , 𝑎!)) + 𝑄!
(,)(𝑠! , 𝑎!)

4. n ← 1 − n
5. Repeat from 1. with each new transition, reduce 𝜂! over time (for example by

setting 𝜂! =
#
!
)

Double Q-Learning

Chart 6

1. Observe 𝑠!, choose 𝑎! according to the current policy
2. Observe 𝑟! , 𝑠!"#, choose 𝑎!"# according to the current

policy
3. Update the Q-value estimate:
𝑄! 𝑠! , 𝑎! ← 𝜂!(𝑟! + 𝛾𝐦𝐚𝐱𝒂∈𝑨

𝑸𝒕 𝒔𝒕"𝟏, 𝒂 − 𝑄!(𝑠! , 𝑎!)) + 𝑄!(𝑠! , 𝑎!)

4. Repeat from 1. with each new transition, reduce 𝜂!
over time (for example 𝜂! =

#
!
)

Policy at each point in time can be 𝜖-greedy.
Convergence is guaranteed if all combinations of s and a
are revisited in endless time.

Store state
Store reward, state, action

Use them for update

Forget all of them again!

We have more memory
available, why shouldn’t we use
it?

Chart 7

Q-Learning Inefficient?

𝐺! = 𝑟! + 𝛾𝐺!"# = 𝑟! + 𝑦𝑄 𝑠!"#, 𝑎!"# ∀𝑡
■ The computation for now assumes that 𝐺!"# = 𝑄(𝑠, 𝑎), with 𝑎 being either

the action under the current policy (SARSA) or under the optimal policy
(QL).

■ We could easily store more state transitions and compute a sample of 𝐺!
for a long horizon.

■ We assume that this converges faster, as we do rely less on possibly very
wrong estimations at the beginning of the learning process.

Current Backup Diagram for SARSA:

Temporal Difference Learning with (n)-Step Horizon
(or simply: TD(n))

Chart 8

𝒔𝟎 𝑸

■ The computation for now assumes that 𝐺!"# = 𝑄(𝑠, 𝑎), with 𝑎 being either
the action under the current policy (SARSA) or under the optimal policy
(QL).

■ We could easily store more state transitions and compute a sample of 𝐺!
for a long horizon.

■ We assume that this converges faster, as we do rely less on possibly very
wrong estimations at the beginning of the learning process.

New Backup Diagram for n-step SARSA:

Temporal Difference Learning with (n)-Step Horizon
(or simply: TD(n))

Chart 9

𝒔𝟎 𝑸𝒔𝒏𝒔𝟏 …

New 𝑮𝒕:𝒏 def. with limited horizon:

𝑮𝒕:𝒕"𝒏 = C
𝒊3𝟎

𝒏

𝜸𝒊𝒓𝒕"𝒊

𝐺!:, is the cumulated discounted reward under a fixed horizon 𝑛 starting
from step 𝑡.

New Bellman-error taking 𝑮𝒕 into account with limited horizon:
𝑄!", 𝑠! , 𝑎! ← 𝜂!(𝐺!:!",-# + 𝛾,𝑄!", 𝑠!", , 𝑎!", − 𝑄!",(𝑠! , 𝑎!)) + 𝑄!",(𝑠! , 𝑎!)

TD(n) - SARSA

Chart 10

𝒔𝒕 𝑸𝒔𝒕4𝒏6𝟏𝒔𝒕'𝟏 …

𝑮𝒕:𝒕(𝒏*𝟏 𝑄,(- 𝑠,(-, 𝑎,(-

Conceptual Problems with TD(n) and Off-Policy Algorithms?

This backup here is strictly on-policy for now, as it incorporates multiple
decisions performed by the policy under assessment!

TD(0) off-Policy/QL incorporated only the what-if element of the Q-value,
which allowed us to exchange the future part easily. This is not the case

anymore.

Solution?
Importance sampling according to the difference between the 2

policies!

TD(n) – Off-Policy?

Chart 11

𝒔𝒕 𝑸𝒔𝒕4𝒏6𝟏𝒔𝒕'𝟏 …

Idea: Find a factor that describes whether the trajectory under
assessment would have been chosen by the policy we want to

evaluate!

„New“ concept: Non-deterministic policies
■ We already use them!
■ 𝜋 𝑎 𝑠) = Probability of choosing a given s.

■ In 𝜖-greedy policies, this probability is 5
|0|

for every non-optimal action

according to our Q-table and 1 − 𝜖 + 5
|0|

for the optimal action.

Importance sampling for Off-Policy TD(n)

Chart 12

Idea: Find a factor that describes whether the trajectory under
assessment would have been chosen by the policy we want to

evaluate!

For now, assume: 𝜋 is the policy that we want to evaluate and 𝑏 is the policy
that we actually run.

In QL:
𝑏 = Policy with exploration

𝜋 = Policy for greedy exploitation
What‘s the meaning of:

𝜋 𝑎! 𝑠!
𝑏(𝑎!|𝑠!)

?

Importance Sampling for Off-Policy TD(n)

Chart 13

Idea: Find a factor that describes whether the trajectory under
assessment would have been chosen by the policy we want to

evaluate!

For now, assume: 𝜋 is the policy that we want to evaluate and 𝑏 is the policy
that we actually run.

In QL:
𝑏 = Policy with exploration

𝜋 = Policy for greedy exploitation
What‘s the meaning of:

𝜋 𝑎! 𝑠!
𝑏(𝑎!|𝑠!)

This is larger than one, if the action 𝑎! would have been chosen by the
greedy policy with a larger probability!

Importance Sampling for Off-Policy TD(n)

Chart 14

Idea: Find a factor that describes whether the trajectory under
assessment would have been chosen by the policy we want to

evaluate!

Now we need such a measure for the whole n-step trajectory.
Idea: Compute this factor over all steps in the trajectory

𝜌!:!", = J
73!

,
𝜋 𝑎7 𝑠7
𝑏(𝑎7|𝑠7)

This demarks the relative importance of the trajectory from t to t+n under the
assumption that a different policy should be evaluated.

And then we weight the update accordingly!
𝑄!", 𝑠! , 𝑎! ← 𝜂!𝝆𝒕"𝟏:𝒕"𝒏-𝟏(𝐺!:,-# + 𝛾,𝑄!", 𝑠!", , 𝑎!", − 𝑄!",(𝑠! , 𝑎!)) + 𝑄!",(𝑠! , 𝑎!)

Importance Sampling for Off-Policy TD(n)

Chart 15

Insights in implementation of QL and
SARSA.

Easy to implement improvement to
avoid overestimation bias.

Makes more efficient use of the
available data by computing targets
with n-horizon.

Takes the idea of On-Policy TD(n) to
Q-Learning.

QL and SARSA Implementations Double Q-Learning

On-Policy TD(n) Off-Policy TD(n)/QL with Horizon

Chart 16

Recall

Still unsolved:
■ State Space Complexity

□ Many Dimensions
□ Continuous Values

■ Current methods require discretization and
become intractable at some point

Chart 17

Yet Unsolved Issues?

■ Continuous Control
□ Action Space might consist of

continuous values as well
□ Can be discretized sometimes,

which prevents us from finding
the actual optimal policy

Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…

Chart 18

Schedule

