

Digital Engineering • Universität Potsdam

Dynamic Programming and Reinforcement Learning Week 5b: Deep Q-Networks

Rainer Schlosser und Alexander Kastius Enterprise Platform and Integration Concepts 19.05.22

Yet Unsolved Issues?

Still unsolved:

- State Space Complexity
 - Many Dimensions
 - Continuous Values
- Current methods require discretization and become intractable at some point

Continuous Control

- Action Space might consist of continuous values as well
- Can be discretized sometimes, which prevents us from finding the actual optimal policy

Deep Q-Networks

Given: Network Q with params ϕ , a learning rate η_t , an optimizer which can minimize the measured error.

- 1. Observe s_t , choose a_t according to the current policy
- 2. Observe r_t , s_{t+1}
- 3. Update the Q-value estimate:

$$\phi \leftarrow -\eta_t \nabla_\phi \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \phi) - Q(s_t, a_t; \phi) \right)^2 + \phi$$

4. Repeat from 1. with each new transition

SARSA and Value Estimation

SARSA with Gradients

Given: Network Q with params ϕ , a learning rate η_t , an optimizer which can minimize the measured error.

- 1. Observe s_t , choose a_t according to the current policy
- 2. Observe r_t , s_{t+1} , choose a_{t+1}
- 3. Update the Q-value estimate: $\phi \leftarrow$ $-\eta_t \nabla_{\phi} (r_t + \gamma Q(s_{t+1}, a_{t+1}; \phi))$ $-Q(s_t, a_t; \phi))^2 + \phi$
- 4. Repeat from 1. with each new transition

Value Estimation with Gradients

Given: Network V with params ϕ , a learning rate η_t , an optimizer which can minimize the measured error.

- 1. Observe s_t , choose a_t according to the policy
- 2. Observe r_t , s_{t+1}
- 3. Update the value estimate:

$$\phi \leftarrow$$

$$\eta_t \nabla_{\boldsymbol{\phi}} (r_t + \gamma \boldsymbol{V}(\boldsymbol{s_{t+1}}; \boldsymbol{\phi}) - \boldsymbol{V}(\boldsymbol{s_t}; \boldsymbol{\phi}))^2 + \boldsymbol{\phi}$$

4. Repeat from 1. with each new transition

Dis-/Advantages of Gradient Based Methods

Advantages

- The network allows high dimensional inputs. We can efficiently work on states with many dimensions and compute values for them.
- As we are adjusting the estimate for other states as well implicitly, we make use of the networks ability to generalize. A similar, but yet unseen state hopefully leads to a similar estimate.
- This is highly flexible with regard to the network setup.

Disadvantages

- We loose all convergence guarantees. As the estimate is not only changed for the observed state, the estimate for other states might actually become worse than it was before.
- We introduce many more hyperparameters, with poor choices resulting in poor performance.
- The whole system turns into a blackbox. Not only the process is hard to predict, now the agent is hard to predict as well.

How does the actual network look like?

2 Options:

Action a is an input and the network outputs the value for the given combination of s, a. The input consists of only *s* and the network outputs the values of all actions *a* as vector.

Differences?

How does the actual network look like?

2 Options:

Action a is an input and the network outputs the value for the given combination of s, a. The input consists of only *s* and the network outputs the values of all actions *a* as vector.

Requires one forward-pass for each action, makes max. op expensive.

Adjusting the value of the action influences every single parameter.

Only a single forward pass for maximization operation necessary.

Adjusting one action influences the other actions, but only one set of weights in the last layer is changed.

Double Deep Q-Networks

Double Deep Q-Networks

- Update occurs by only computing the target value by using the target network
- Target network is not updated immediately
- Instead, either full or moving average updates are applied every few steps

•
$$\phi_t = w\phi_m + (1 - w)\phi_t, w \in (0, 1)$$

New architecture

Data Usage is still inefficient.

Experience Replay

- Network estimation shows the disadvantage of possible overfitting to very recent tuples.
- Computing gradients for a single tuple is inefficient as well.
- Idea: Introduce replay buffer
- Every few tuples, take last collected tuples and some random samples from the replay buffer to learn on a whole batch.

Replay Buffer

s _t	a _t	r _t	<i>s</i> _{<i>t</i>+1}
<i>s</i> ₁	<i>a</i> ₁	r_1	<i>S</i> ₂
<i>S</i> ₂	<i>a</i> ₂	r_2	S ₃
<i>S</i> ₃	<i>a</i> ₃	r_3	S_4
S_4	a_4	r_4	<i>S</i> ₅

Prioritized Experience Replay

- Idea: There are tuples rarely seen in processes and thus rarely used for training. In many cases, this leads to poor estimations on those combinations.
- Solution: Prioritize those tuples in the selection process for the training op.
- The TD-error does provide us with a measure of how wrong an estimate is.
- We have to store this either on collection or at an update.
- Priority p_t = The TD-error measured last time the tuple was used.

Replay Buffer

s _t	a _t	r _t	<i>s</i> _{<i>t</i>+1}	p_t
<i>s</i> ₁	a_1	r_1	<i>s</i> ₂	td_1
<i>S</i> ₂	<i>a</i> ₂	r_2	S ₃	td_2
<i>S</i> ₃	<i>a</i> ₃	r_3	S_4	td_3
S_4	a_4	r_4	<i>S</i> ₅	td_4

Prioritized Experience Replay – Sampling

- Problem: Greedily selecting by the error causes the same tuples to be selected over and over again until their error is diminished. This can cause overfitting.
- Solution: We randomly sample the tuples. The priority of being chosen is relative to the measured error (*j* is the index of a tuple in the store, *N* the number of tuples stored, *p_j* is the priority mentioned aforehand, *α* determines the shape of the sampling probabilities):

$$P(j) = \frac{p_j^{\alpha}}{\sum_{k=1}^N p_k^{\alpha}}$$

• As our buffer contains all p_k we can simply sample from it by computing a number between 0 and 1 and then searching for the element at the corresponding relative position in the buffer.

- Problem: Changing the data distribution introduces a bias to the weight updates.
- Solution: Adjust the TD-error by an importance sampling factor (*j* is the index of a tuple in the store, *N* the number of tuples stored, $\beta \in [0, 1]$):

$$w_j = \left(\frac{1}{N} * \frac{1}{P(j)}\right)^{\beta}$$

 β is an annealing factor, that moves towards 1 during the course of learning. This is possible, as a small bias is not that important in the beginning of the learning process.

How to apply the weight updates?

As done for other examples of importance sampling: Multiply the TD-error with it before computing updates.

$$\phi \leftarrow -\eta_t w \nabla_\phi \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \phi) - Q(s_t, a_t; \phi) \right)^2 + \phi$$
Chart **13**

Now that we've got everything together a last problem arises: We need a data structure for the buffer that performs two tasks: Efficiently storing the TD-errors and allowing efficient sampling from it. Solution: **Sum Tree**

Searching for something at position n: Check left-hand element, if it is larger than the searched value, go left, otherwise subtract left and go right.

Chart 14

Now we've got everything together a last problem arises: We need a data structure for the buffer that performs two tasks: Efficiently storing the TD-errors and allowing efficient sampling from it. Solution: **Sum Tree**

Replacing an element: Replace value at the leaf, iterate tree upwards and recompute sums.

Chart **15**

Now we've got everything together a last problem arises: We need a data structure for the buffer that performs two tasks: Efficiently storing the TD-errors and allowing efficient sampling from it. Solution: **Sum Tree**

Implementation: The whole tree can be stored in an array of fixed length if the number of proposed elements is known. Pointer based implementation Chart **16** is possible as well.

Assignment: Bringing it all together.

Assignment, work in groups of 3.

- Implement Deep Q-Networks in its most basic version using the ML library of your choice. If any implementation issues arise, don't hesitate to contact us.
- 2. Add Double Learning, Dueling Networks and Prioritized Experience Replay.
- 3. Measure the difference in performance, for example on the LunarLander-v2 environment provided by the Open AI gym:

https://www.gymlibrary.ml/environmen ts/box2d/lunar_lander/

OpenAI Gym Example

Every Gym has a standardized interface that you can use.

- The .reset() methods returns it to its initial state.
- The .step() method takes an action choice, a vector of length 1 that contains either a 0 or a 1 in the case of the MountainCar environment.
- The return value of .step() consists, similarly to the environments provided by us, 4 values: The new state, the reward, a variable that indicates the end of an episode (we reached a sink state) and a dictionary full of debug variables.
- The observation_space and action_space variables indicate the dimensionality of the state and the action space.

Schedule

...

Week	Dates	Торіс		
1	April 21	Introduction		
2	April 25/28	Finite + Infinite Time MDPs		
3	May 2/5	Approximate Dynam	nic Programming (ADP) + DP Exercise	
4	May 12	Q-Learning (QL)	(not Mon May 9)	
5	May 16/19	Q-Learning Extens	sions and Deep Q-Networks	
6	May 23	DQN Extensions	(not Thu May 26 "Himmelfahrt")	
7	May 30/June 2	Policy Gradient Algorithms		
8	June 9	Project Assignments(not Mon June 6 "Pfingstmontag")		

Dueling Networks - Advantage

What is the meaning of $A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$?

 $A(s_t, a_t)$ is called the advantage.

The maximum of $Q(s_t, a_t)$ is always the same as the maximum of the corresponding $A(s_t, a_t)$.

Idea: Use this information to learn the advantages explicitly, and only learn the actual Q-values because we are required to do so.

A specialized network architecture can do this task for us.

When using dueling networks the Q-value is computed according to:

 $Q(s_t, a_t) = A(s_t, a_t) - \max_{a \in \mathbf{A}} A(s_t, a) + V(s_t)$

Notice: A Advantage A Action set

We do this according to our off-policy approach. If we want to learn the optimal policy, it is reasonable to assume that $Q(s_t, a_t) = V(s_t)$ for the optimal action.

Furthermore, this solves the problem of identifiability. If we update a value, we need to change the gradients either in *A*, if the advantage was estimated poorly or in *V* if the value was off.

A more stable version of the same idea computes Q according to:

$$Q(s_t, a_t) = A(s_t, a_t) - \frac{1}{|\mathbf{A}|} \sum_{i=1}^{|\mathbf{A}|} A(s_t, a_i) + V(s_t)$$
 Chart **21**

Dueling Networks - Implementation

Two Streams

Chart **22**