
Dynamic Programming and Reinforcement Learning
Week 5b: Deep Q-Networks

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

19.05.22

Still unsolved:
■ State Space Complexity

□ Many Dimensions
□ Continuous Values

■ Current methods require discretization and
become intractable at some point

Chart 2

Yet Unsolved Issues?

■ Continuous Control
□ Action Space might consist of

continuous values as well
□ Can be discretized sometimes,

which prevents us from finding
the actual optimal policy

Given: Network 𝑄 with params 𝜙, a learning rate 𝜂!, an optimizer which
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according to the current policy
2. Observe 𝑟! , 𝑠!"#
3. Update the Q-value estimate:

𝜙 ← −𝜂!∇$ 𝒓𝒕 + 𝜸𝒎𝒂𝒙𝒂∈𝑨
𝑸 𝒔𝒕"𝟏, 𝒂; 𝝓 − 𝑸 𝒔𝒕, 𝒂𝒕; 𝝓

𝟐

+ 𝜙

4. Repeat from 1. with each new transition

Deep Q-Networks

Chart 3

SARSA with Gradients
Given: Network 𝑄 with params 𝜙, a
learning rate 𝜂!, an optimizer which
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according

to the current policy
2. Observe 𝑟! , 𝑠!"#, choose 𝑎!"#
3. Update the Q-value estimate:

𝜙 ←
−𝜂!∇$5

6
𝑟! + 𝛾𝑸 𝒔𝒕"𝟏, 𝒂𝒕"𝟏; 𝝓

− 𝑄 𝑠! , 𝑎!; 𝜙
+
+ 𝜙

4. Repeat from 1. with each new
transition

Value Estimation with Gradients
Given: Network 𝑉 with params 𝜙, a
learning rate 𝜂!, an optimizer which
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according

to the policy
2. Observe 𝑟! , 𝑠!"#
3. Update the value estimate:

𝜙 ←

−𝜂!∇$ 𝑟! + 𝛾𝑽 𝒔𝒕"𝟏; 𝝓 − 𝑉 𝑠!; 𝜙
+
+ 𝜙

4. Repeat from 1. with each new
transition

Chart 4

SARSA and Value Estimation

Advantages
■ The network allows high

dimensional inputs. We can
efficiently work on states with
many dimensions and compute
values for them.

■ As we are adjusting the estimate
for other states as well implicitly,
we make use of the networks
ability to generalize. A similar, but
yet unseen state hopefully leads
to a similar estimate.

■ This is highly flexible with regard
to the network setup.

Disadvantages
■ We loose all convergence

guarantees. As the estimate is not
only changed for the observed
state, the estimate for other
states might actually become
worse than it was before.

■ We introduce many more
hyperparameters, with poor
choices resulting in poor
performance.

■ The whole system turns into a
blackbox. Not only the process is
hard to predict, now the agent is
hard to predict as well. Chart 5

Dis-/Advantages of Gradient Based Methods

Action 𝑎 is an input and the network
outputs the value for the given

combination of 𝑠, 𝑎.

The input consists of only 𝑠 and the
network outputs the values of all

actions 𝑎 as vector.

Chart 6

Network Implementation

How does the actual network look like?

2 Options:

Differences?

Action 𝑎 is an input and the network
outputs the value for the given

combination of 𝑠, 𝑎.

Requires one forward-pass for each
action, makes max. op expensive.
Adjusting the value of the action

influences every single parameter.

The input consists of only 𝑠 and the
network outputs the values of all

actions 𝑎 as vector.

Only a single forward pass for
maximization operation necessary.
Adjusting one action influences the
other actions, but only one set of

weights in the last layer is changed.

Chart 7

Network Implementation

How does the actual network look like?

2 Options:

Double Deep Q-Networks

Estimation
Network

State
Action

Reward
Future
Reward

Target
Network

Params: 𝝓(𝒕)

State
Action

Reward
Future
Reward

Estimation
Network

Params: 𝝓(𝒎)

𝜙(")

← −η∇$(") 𝑟% + 𝛾𝑄 𝑠%&', argmax
($∈ *

𝑄 𝑠%&', 𝑎+; 𝜙 " ; 𝜙 % − 𝑄 𝑠% , 𝑎%; 𝜙 "
,

+ 𝜙(")

Old architecture New architecture

Estimation network

■ Update occurs by only
computing the target value by
using the target network

■ Target network is not updated
immediately

■ Instead, either full or moving
average updates are applied
every few steps

■ 𝜙! = 𝑤𝜙, + 1 − 𝑤 𝜙!, 𝑤 ∈ (0, 1)

Double Deep Q-Networks

Target
Network

State
Action

Reward
Future
Reward

Estimation
Network

New architecture

Chart 9

■ Data Usage is still inefficient.
■ Network estimation shows the

disadvantage of possible
overfitting to very recent tuples.

■ Computing gradients for a single
tuple is inefficient as well.

■ Idea: Introduce replay buffer
■ Every few tuples, take last

collected tuples and some random
samples from the replay buffer to
learn on a whole batch.

Replay Buffer

Chart 10

Experience Replay

𝒔𝒕 𝒂𝒕 𝒓𝒕 𝒔𝒕&𝟏
𝑠' 𝑎' 𝑟' 𝑠,
𝑠, 𝑎, 𝑟, 𝑠/
𝑠/ 𝑎/ 𝑟/ 𝑠0
𝑠0 𝑎0 𝑟0 𝑠1
… … … …

■ Idea: There are tuples rarely seen
in processes and thus rarely used
for training. In many cases, this
leads to poor estimations on
those combinations.

■ Solution: Prioritize those
tuples in the selection process
for the training op.

■ The TD-error does provide us with
a measure of how wrong an
estimate is.

■ We have to store this either on
collection or at an update.

■ Priority 𝑝! = The TD-error
measured last time the tuple was
used.

Replay Buffer

Chart 11

Prioritized Experience Replay

𝒔𝒕 𝒂𝒕 𝒓𝒕 𝒔𝒕&𝟏 𝒑𝒕
𝑠' 𝑎' 𝑟' 𝑠, 𝑡𝑑'
𝑠, 𝑎, 𝑟, 𝑠/ 𝑡𝑑,
𝑠/ 𝑎/ 𝑟/ 𝑠0 𝑡𝑑/
𝑠0 𝑎0 𝑟0 𝑠1 𝑡𝑑0
… … … … …

■ Problem: Greedily selecting by the error causes the same tuples to be
selected over and over again until their error is diminished. This can
cause overfitting.

■ Solution: We randomly sample the tuples. The priority of being chosen is
relative to the measured error (𝑗 is the index of a tuple in the store, 𝑁
the number of tuples stored, 𝑝- is the priority mentioned aforehand, 𝛼
determines the shape of the sampling probabilities):

𝑃 𝑗 =
𝑝-
.

∑/0#1 𝑝/.

■ As our buffer contains all 𝑝/ we can simply sample from it by computing
a number between 0 and 1 and then searching for the element at the
corresponding relative position in the buffer.

Prioritized Experience Replay – Sampling

Chart 12

■ Problem: Changing the data distribution introduces a bias to the weight
updates.

■ Solution: Adjust the TD-error by an importance sampling factor (𝑗 is the
index of a tuple in the store, 𝑁 the number of tuples stored, 𝛽 ∈ [0, 1]):

𝑤- =
1
𝑁
∗

1
𝑃 𝑗

2

𝛽 is an annealing factor, that moves towards 1 during the course of
learning. This is possible, as a small bias is not that important in the
beginning of the learning process.

How to apply the weight updates?
As done for other examples of importance sampling: Multiply the
TD-error with it before computing updates.

𝜙 ← −𝜂!𝑤∇$ 𝒓𝒕 + 𝜸𝒎𝒂𝒙𝒂∈𝑨
𝑸 𝒔𝒕"𝟏, 𝒂; 𝝓 − 𝑸 𝒔𝒕, 𝒂𝒕; 𝝓

𝟐

+ 𝜙

Prioritized Experience Replay – Reweighting

Chart 13

Now that we‘ve got everything together a last problem arises: We need a
data structure for the buffer that performs two tasks: Efficiently storing the
TD-errors and allowing efficient sampling from it. Solution: Sum Tree

Searching for something at position n: Check left-hand element, if it is
larger than the searched value, go left, otherwise subtract left and go right.

Prioritized Experience Replay – Data Structure

Chart 14

11

3

512 3

8

Now we‘ve got everything together a last problem arises: We need a data
structure for the buffer that performs two tasks: Efficiently storing the TD-
errors and allowing efficient sampling from it. Solution: Sum Tree

Replacing an element: Replace value at the leaf, iterate tree upwards and
recompute sums.

Prioritized Experience Replay – Data Structure

Chart 15

11

3

512 3

8

Now we‘ve got everything together a last problem arises: We need a data
structure for the buffer that performs two tasks: Efficiently storing the TD-
errors and allowing efficient sampling from it. Solution: Sum Tree

Implementation: The whole tree can be stored in an array of fixed length
if the number of proposed elements is known. Pointer based implementation

is possible as well.

Prioritized Experience Replay – Data Structure

Chart 16

11

3

512 3

8

Assignment, work in groups of 3.
1. Implement Deep Q-Networks in its

most basic version using the ML library
of your choice. If any implementation
issues arise, don’t hesitate to contact
us.

2. Add Double Learning, Dueling Networks
and Prioritized Experience Replay.

3. Measure the difference in performance,
for example on the LunarLander-v2
environment provided by the Open AI
gym:
https://www.gymlibrary.ml/environmen
ts/box2d/lunar_lander/

Assignment: Bringing it all together.

Chart 17

Every Gym has a standardized interface that
you can use.

■ The .reset() methods returns it to its initial
state.

■ The .step() method takes an action choice, a
vector of length 1 that contains either a 0 or a
1 in the case of the MountainCar environment.

■ The return value of .step() consists, similarly
to the environments provided by us, 4 values:
The new state, the reward, a variable that
indicates the end of an episode (we reached a
sink state) and a dictionary full of debug
variables.

■ The observation_space and action_space
variables indicate the dimensionality of the
state and the action space.

OpenAI Gym Example

Chart 18

Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…

Chart 19

Schedule

What is the meaning of
𝐴 𝑠! , 𝑎! = 𝑄 𝑠! , 𝑎! − 𝑉(𝑠!)

?

𝐴 𝑠! , 𝑎! is called the advantage.
The maximum of 𝑄 𝑠! , 𝑎! is always the same as the maximum of the

corresponding 𝐴 𝑠! , 𝑎! .

Idea: Use this information to learn the advantages explicitly, and only learn
the actual Q-values because we are required to do so.

A specialized network architecture can do this task for us.

Dueling Networks - Advantage

Chart 20

When using dueling networks the Q-value is computed according to:
𝑄 𝑠! , 𝑎! = 𝐴 𝑠! , 𝑎! −max

3∈𝐀
𝐴(𝑠! , 𝑎) + 𝑉(𝑠!)

Notice: 𝐴 Advantage 𝐀 Action set
We do this according to our off-policy approach. If we want to learn the

optimal policy, it is reasonable to assume that 𝑄 𝑠! , 𝑎! = 𝑉(𝑠!) for the optimal
action.

Furthermore, this solves the problem of identifiability. If we update a value,
we need to change the gradients either in 𝐴, if the advantage was estimated

poorly or in 𝑉 if the value was off.

A more stable version of the same idea computes Q according to:

𝑄 𝑠! , 𝑎! = 𝐴 𝑠! , 𝑎! −
1
|𝐀|

Q
50#

|𝐀|

𝐴(𝑠! , 𝑎5) + 𝑉(𝑠!)

Dueling Networks - Normalization

Chart 21

Normalization
Required to ensure
identifiability. If an
estimate is off the
realized value, we need
to know if it was only the
specific advantage which
was wrong, or if the the
whole state is misvalued.

Dueling Networks - Implementation

Chart 22

𝒔𝒕
HL 1
𝒘𝟏, 𝒃𝟏

HL A 2
𝒘𝒂𝟏, 𝒃𝒂𝟏

HL V 2
𝒘𝒗𝟏, 𝒃𝒗𝟏

+

mean

−

𝑸(𝒔𝒕, 𝒂𝒕)

Two Streams
The first joined layers of
the network perform
feature extraction, the
split streams at the end
compute the value and
the advantage
independently.

