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Still unsolved:
■ State Space Complexity

□ Many Dimensions
□ Continuous Values

■ Current methods require discretization and 
become intractable at some point
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Yet Unsolved Issues?

■ Continuous Control
□ Action Space might consist of 

continuous values as well
□ Can be discretized sometimes, 

which prevents us from finding 
the actual optimal policy



Given: Network 𝑄 with params 𝜙, a learning rate 𝜂!, an optimizer which 
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according to the current policy
2. Observe 𝑟! , 𝑠!"#
3. Update the Q-value estimate:

𝜙 ← −𝜂!∇$ 𝒓𝒕 + 𝜸𝒎𝒂𝒙𝒂∈𝑨
𝑸 𝒔𝒕"𝟏, 𝒂; 𝝓 − 𝑸 𝒔𝒕, 𝒂𝒕; 𝝓

𝟐

+ 𝜙

4. Repeat from 1. with each new transition

Deep Q-Networks
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SARSA with Gradients
Given: Network 𝑄 with params 𝜙, a 
learning rate 𝜂!, an optimizer which 
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according 

to the current policy
2. Observe 𝑟! , 𝑠!"#, choose 𝑎!"#
3. Update the Q-value estimate:

𝜙 ←
−𝜂!∇$5

6
𝑟! + 𝛾𝑸 𝒔𝒕"𝟏, 𝒂𝒕"𝟏; 𝝓

− 𝑄 𝑠! , 𝑎!; 𝜙
+
+ 𝜙

4. Repeat from 1. with each new 
transition

Value Estimation with Gradients
Given: Network 𝑉 with params 𝜙, a 
learning rate 𝜂!, an optimizer which 
can minimize the measured error.
1. Observe 𝑠!, choose 𝑎! according 

to the policy
2. Observe 𝑟! , 𝑠!"#
3. Update the value estimate:

𝜙 ←

−𝜂!∇$ 𝑟! + 𝛾𝑽 𝒔𝒕"𝟏; 𝝓 − 𝑉 𝑠!; 𝜙
+
+ 𝜙

4. Repeat from 1. with each new 
transition
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SARSA and Value Estimation



Advantages
■ The network allows high 

dimensional inputs. We can 
efficiently work on states with 
many dimensions and compute 
values for them.

■ As we are adjusting the estimate 
for other states as well implicitly, 
we make use of the networks 
ability to generalize. A similar, but 
yet unseen state hopefully leads 
to a similar estimate.

■ This is highly flexible with regard 
to the network setup.

Disadvantages
■ We loose all convergence 

guarantees. As the estimate is not 
only changed for the observed 
state, the estimate for other 
states might actually become 
worse than it was before.

■ We introduce many more 
hyperparameters, with poor 
choices resulting in poor 
performance.

■ The whole system turns into a 
blackbox. Not only the process is 
hard to predict, now the agent is 
hard to predict as well. Chart 5

Dis-/Advantages of Gradient Based Methods



Action 𝑎 is an input and the network 
outputs the value for the given 

combination of 𝑠, 𝑎.

The input consists of only 𝑠 and the 
network outputs the values of all 

actions 𝑎 as vector.
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Network Implementation

How does the actual network look like?

2 Options:

Differences?



Action 𝑎 is an input and the network 
outputs the value for the given 

combination of 𝑠, 𝑎.

Requires one forward-pass for each 
action, makes max. op expensive.
Adjusting the value of the action 

influences every single parameter.

The input consists of only 𝑠 and the 
network outputs the values of all 

actions 𝑎 as vector.

Only a single forward pass for 
maximization operation necessary.
Adjusting one action influences the 
other actions, but only one set of 

weights in the last layer is changed.
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Network Implementation

How does the actual network look like?

2 Options:



Double Deep Q-Networks
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Estimation network



■ Update occurs by only 
computing the target value by 
using the target network

■ Target network is not updated 
immediately

■ Instead, either full or moving 
average updates are applied 
every few steps

■ 𝜙! = 𝑤𝜙, + 1 − 𝑤 𝜙!, 𝑤 ∈ (0, 1)

Double Deep Q-Networks
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■ Data Usage is still inefficient.
■ Network estimation shows the 

disadvantage of possible 
overfitting to very recent tuples.

■ Computing gradients for a single 
tuple is inefficient as well.

■ Idea: Introduce replay buffer
■ Every few tuples, take last 

collected tuples and some random 
samples from the replay buffer to 
learn on a whole batch.

Replay Buffer
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Experience Replay

𝒔𝒕 𝒂𝒕 𝒓𝒕 𝒔𝒕&𝟏
𝑠' 𝑎' 𝑟' 𝑠,
𝑠, 𝑎, 𝑟, 𝑠/
𝑠/ 𝑎/ 𝑟/ 𝑠0
𝑠0 𝑎0 𝑟0 𝑠1
… … … …



■ Idea: There are tuples rarely seen 
in processes and thus rarely used 
for training. In many cases, this 
leads to poor estimations on 
those combinations.

■ Solution: Prioritize those 
tuples in the selection process 
for the training op.

■ The TD-error does provide us with 
a measure of how wrong an 
estimate is.

■ We have to store this either on 
collection or at an update.

■ Priority 𝑝! = The TD-error 
measured last time the tuple was 
used.

Replay Buffer
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Prioritized Experience Replay

𝒔𝒕 𝒂𝒕 𝒓𝒕 𝒔𝒕&𝟏 𝒑𝒕
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… … … … …



■ Problem: Greedily selecting by the error causes the same tuples to be 
selected over and over again until their error is diminished. This can 
cause overfitting.

■ Solution: We randomly sample the tuples. The priority of being chosen is 
relative to the measured error (𝑗 is the index of a tuple in the store, 𝑁
the number of tuples stored, 𝑝- is the priority mentioned aforehand, 𝛼
determines the shape of the sampling probabilities):

𝑃 𝑗 =
𝑝-
.

∑/0#1 𝑝/.

■ As our buffer contains all 𝑝/ we can simply sample from it by computing 
a number between 0 and 1 and then searching for the element at the 
corresponding relative position in the buffer.

Prioritized Experience Replay – Sampling
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■ Problem: Changing the data distribution introduces a bias to the weight 
updates.

■ Solution: Adjust the TD-error by an importance sampling factor (𝑗 is the 
index of a tuple in the store, 𝑁 the number of tuples stored, 𝛽 ∈ [0, 1]):

𝑤- =
1
𝑁
∗

1
𝑃 𝑗

2

𝛽 is an annealing factor, that moves towards 1 during the course of 
learning. This is possible, as a small bias is not that important in the 
beginning of the learning process.

How to apply the weight updates?
As done for other examples of importance sampling: Multiply the 
TD-error with it before computing updates.

𝜙 ← −𝜂!𝑤∇$ 𝒓𝒕 + 𝜸𝒎𝒂𝒙𝒂∈𝑨
𝑸 𝒔𝒕"𝟏, 𝒂; 𝝓 − 𝑸 𝒔𝒕, 𝒂𝒕; 𝝓

𝟐

+ 𝜙

Prioritized Experience Replay – Reweighting
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Now that we‘ve got everything together a last problem arises: We need a 
data structure for the buffer that performs two tasks: Efficiently storing the
TD-errors and allowing efficient sampling from it. Solution: Sum Tree

Searching for something at position n: Check left-hand element, if it is
larger than the searched value, go left, otherwise subtract left and go right.

Prioritized Experience Replay – Data Structure

Chart 14

11

3

512 3

8



Now we‘ve got everything together a last problem arises: We need a data
structure for the buffer that performs two tasks: Efficiently storing the TD-
errors and allowing efficient sampling from it. Solution: Sum Tree

Replacing an element: Replace value at the leaf, iterate tree upwards and
recompute sums.

Prioritized Experience Replay – Data Structure
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Now we‘ve got everything together a last problem arises: We need a data
structure for the buffer that performs two tasks: Efficiently storing the TD-
errors and allowing efficient sampling from it. Solution: Sum Tree

Implementation: The whole tree can be stored in an array of fixed length
if the number of proposed elements is known. Pointer based implementation

is possible as well.

Prioritized Experience Replay – Data Structure
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Assignment, work in groups of 3.
1. Implement Deep Q-Networks in its 

most basic version using the ML library 
of your choice. If any implementation 
issues arise, don’t hesitate to contact 
us.

2. Add Double Learning, Dueling Networks 
and Prioritized Experience Replay.

3. Measure the difference in performance, 
for example on the LunarLander-v2 
environment provided by the Open AI 
gym: 
https://www.gymlibrary.ml/environmen
ts/box2d/lunar_lander/

Assignment: Bringing it all together.
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Every Gym has a standardized interface that 
you can use.

■ The .reset() methods returns it to its initial 
state.

■ The .step() method takes an action choice, a 
vector of length 1 that contains either a 0 or a 
1 in the case of the MountainCar environment.

■ The return value of .step() consists, similarly 
to the environments provided by us, 4 values: 
The new state, the reward, a variable that 
indicates the end of an episode (we reached a 
sink state) and a dictionary full of debug 
variables.

■ The observation_space and action_space
variables indicate the dimensionality of the 
state and the action space.

OpenAI Gym Example
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Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…
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Schedule



What is the meaning of
𝐴 𝑠! , 𝑎! = 𝑄 𝑠! , 𝑎! − 𝑉(𝑠!)

?

𝐴 𝑠! , 𝑎! is called the advantage.
The maximum of 𝑄 𝑠! , 𝑎! is always the same as the maximum of the 

corresponding 𝐴 𝑠! , 𝑎! .

Idea: Use this information to learn the advantages explicitly, and only learn 
the actual Q-values because we are required to do so.

A specialized network architecture can do this task for us.

Dueling Networks - Advantage
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When using dueling networks the Q-value is computed according to:
𝑄 𝑠! , 𝑎! = 𝐴 𝑠! , 𝑎! −max

3∈𝐀
𝐴(𝑠! , 𝑎) + 𝑉(𝑠!)

Notice: 𝐴 Advantage 𝐀 Action set
We do this according to our off-policy approach. If we want to learn the 

optimal policy, it is reasonable to assume that 𝑄 𝑠! , 𝑎! = 𝑉(𝑠!) for the optimal 
action.

Furthermore, this solves the problem of identifiability. If we update a value, 
we need to change the gradients either in 𝐴, if the advantage was estimated 

poorly or in 𝑉 if the value was off.

A more stable version of the same idea computes Q according to:

𝑄 𝑠! , 𝑎! = 𝐴 𝑠! , 𝑎! −
1
|𝐀|

Q
50#

|𝐀|

𝐴(𝑠! , 𝑎5) + 𝑉(𝑠!)

Dueling Networks - Normalization
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Normalization
Required to ensure 
identifiability. If an 
estimate is off the 
realized value, we need 
to know if it was only the 
specific advantage which 
was wrong, or if the the 
whole state is misvalued.

Dueling Networks - Implementation

Chart 22

𝒔𝒕
HL 1
𝒘𝟏, 𝒃𝟏

HL A 2
𝒘𝒂𝟏, 𝒃𝒂𝟏

HL V 2
𝒘𝒗𝟏, 𝒃𝒗𝟏

+

mean

−

𝑸(𝒔𝒕, 𝒂𝒕)

Two Streams
The first joined layers of 
the network perform 
feature extraction, the 
split streams at the end 
compute the value and 
the advantage 
independently.


