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■ Last session, we introduced Deep Q-Networks
■ Replacing the table based estimate with an ANN resolved the state space 

issues, but required us to become as efficient on our training data as 
possible.

■ Double Deep Q-Networks helps us overcome the maximization bias.
■ Dueling Deep Q-Networks can improve the estimation by enforcing a 

structure of computation that resembles the internal structure of the Q-
values.

■ Experience Replay and especially Prioritized Experience Replay do 
highly increase our efficiency with regard to data usage.

■ Are there more extensions available? Yes, and they are aggregated in 
RAINBOW which combines DQN and the three mentioned above with: 
distributional Q-learning, (n)-step returns, and noisy nets.

Current State of DQN
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We just mentioned RAINBOW is estimating distributions of rewards.
This is very different to previous approaches. All previous methods assumed 
that we are learning the expected value of a state or state-action pair.

Intro: To simplify the algorithm, we discretize the space of values. Instead 
of assuming a value to be constant, we assume that it belongs to a set of 
possible choices.
Necessary hyperparameters: A minimum value 𝒗𝒎𝒊𝒏 and a maximum 
value 𝒗𝒎𝒂𝒙. We then discretize the range between 𝑣&'( and 𝑣&)* into 𝑵𝒂𝒕𝒐𝒎𝒔
elements. The values of those three variables are chosen manually and have 
to be configured correctly. (Example: Rainbow uses 𝑣&'( = −10, 𝑣&)* = 10 and 
𝑁)./&0 = 51 for Atari games with rewards clipped to -1 and 1).

𝑧' = 𝑣&'( + 𝑖 − 1
𝑣&)* − 𝑣&'(
𝑁)./&0

𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑁)./&0}

Distributional RL - Discretization
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Given this vector 𝒛 consisting of our atoms:

𝑧' = 𝑣&'( + 𝑖 − 1
𝑣&)* − 𝑣&'(
𝑁)./&0

𝑓𝑜𝑟 𝑖 ∈ 1,… ,𝑁)./&0

We can create a prob. distribution by assigning each value in 𝒛 a 
probability.
This can be achieved by letting our network 𝑄 output 𝑁)./&0 values per 
action and normalizing those (𝑄 𝑠, 𝑎 ' is the i-th output of Q for s and a, 𝑝'
the probability that choosing a in s achieves value 𝑧'):

𝑝' =
𝑒1 0,) !

∑345
6"#$%& 𝑒1 0,) '

Now our network outputs a distribution of values instead of expected 
values!

Distributional RL - Discretization
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Okay got it, but how to learn those distributions?
Idea:
Estimate a target distribution and use a measure for the difference between 
to distributions as optimization loss.

1. We have a realized reward.
2. We have a distribution of Q-values for all possible actions over a range of 

values in the state after this step.

If we now assume that every time we start from 𝑠. and follow our policy, we 
would yield the same reward this means that the distribution of values from 
𝑠. , 𝑎. has the same shape as the distribution of values for the following s,a
combination, but is shifted towards the realized reward in that step and is 
discounted according to 𝛾.

Distributional RL – Target Distribution
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https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Distributional RL

Chart 6



Shifting towards a target distribution:
Given for this step: (𝑠. , 𝑎. , 𝑟. , 𝑠.75) as usual. 𝑧 as defined by our hyper 
parameters. 𝑝', the probabilities computed from our Q-network for 
𝑄(𝑠.75, 𝑎′).
𝑎′ is chosen by selecting the action that has the maximum expected value 
according to the output distribution: 𝑎′ = argmax)∈9 𝐸(𝑄 𝑠.75, 𝑎 ) .

We then can shift the output of the probability distribution for state 𝑠.75
towards the reward achieved in 𝑟. to achieve a valid distribution for 𝑠..

𝑧′' = 𝑟. + 𝛾𝑧
𝑝': = 𝑝'

This distribution has different values in 𝑧!

Distributional RL – Shifting and Compressing
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Fitting the atoms:
It is necessary, that our distributions use the same set of atoms, to compute 
a loss function that we can minimize.
We have to project the target distribution back onto the values available in 
our output system.
Example Projection:
1. Initialize another probability vector 𝑝:: with 0.

2. Compute 𝑏 = ;!
( <=%!)

>*
and 𝑏? = 𝑏 and 𝑏@ = 𝑏 for all 𝑖 (𝑏@ and 𝑏? contain 

the respective next lower and larger index in original 𝑧 for 𝑧':)
3. Then 𝑝A+

:: ← 𝑝A+
:: + 𝑝': ∗ (𝑏 − 𝑏@) and 𝑝A,

:: ← 𝑝A,
:: + 𝑝': ∗ (𝑏? − 𝑏)

If the 𝑧′ is too large or too small to fulfill 2. (The shift was so large, that 
there are values with positive probability that exceed our allowed range), 
account them to 𝑝5:: or 𝑝6"#$%&

:: .

Distributional RL - Projection
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We can compute the cross-entropy or Kullback-Leibler-divergence of 
both distributions and use this a loss function. Both do provide us 
with a measure of how similar to prob. distributions are.
𝑝' = Prob. of choosing 𝑧' with the orig. dist., 𝑝':: = Prob. of choosing 𝑧' in the 
target. dist.

Cross-entropy:

− J
'45

6"#$%&

𝑝':: log 𝑝'

Kullback-Leibler-Divergence:

J
'45

6"#$%&

𝑝'::log(
𝑝'::

𝑝'
)

RAINBOW uses KL, original distributional QL paper uses cross-entropy.

Distributional RL - Loss
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Chart 10

■ The double network approach can be taken into account by using it to 
predict the values for the target distribution.

■ The dueling network can still be implemented, as there is no limitation 
on the internal structure of the network predicting the values used to 
compute the probabilities.

■ Experience replay can still be applied as well.

Distributional RL – Extensions



Two extensions left!



■ We introduced (n)-step returns and importance sampling for Q-learning 
some weeks ago.

■ The same principles can still be applied when using an estimator.
■ Interestingly: RAINBOW omits the use of importance sampling factors 

even though it operates on a different policy. Why? Because we can 
replace 𝜖-greedy with a different mechanism.

■ Remember:

𝐺.:.7( =J
C4.

.7(

𝛾C<.𝑟C

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐺.:.7(<5 + 𝛾(max)∈9
𝑄(𝑠.7( , 𝑎)

(n)-Step returns
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For now we implemented exploration with 𝜖-greedy. New idea: Add noise to 
the networks output.

A linear layer:
𝑦 = 𝑊𝑥 + 𝑏

A noisy linear layer:
𝑦 = 𝑊𝑥 + 𝑏 + (𝑊(/'0D⨀𝑒E)𝑥 + (𝑏(/'0D⨀𝑒A)

⨀ is the element wise product. 𝑒F and 𝑒A are randomly generated every 
time we need to compute something. 𝑊(/'0D and 𝑏(/'0D have the same shape 

as 𝑊 and 𝑏.
By adjusting 𝑊(/'0D and 𝑏(/'0D, the training process can reduce the noise, if it 
causes too much harm in the divergence! If the values are far off only due 
to noise à reduce their weights. But this can happen depending on the 
state under assessment. Also manually tuning exploration rates is not 
necessary anymore.

Overcoming 𝜖-greedy

Chart 13



Everything together:
■ We use capable ANNs for the estimation of our values.
■ We estimate distributions of values instead of expected values.
■ We use double learning to overcome the maximization bias.
■ We use dueling networks to take the structure of Q into account.
■ We use (n)-step returns to learn from delayed rewards.
■ We use noise in the network for exploration, the policy is greedy.
■ We use prioritized experience replay, to increase our data efficiency.
■ This is perfect, isn’t it?

No. We still can’t do anything when the action space is continuous. 
Our perfect DQN system only works on discrete action spaces.
à Policy Gradients!

RAINBOW
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Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…
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