
Dynamic Programming and Reinforcement Learning
Week 5b: Further Additions to Deep Q-Networks

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

19.05.22

■ Last session, we introduced Deep Q-Networks
■ Replacing the table based estimate with an ANN resolved the state space

issues, but required us to become as efficient on our training data as
possible.

■ Double Deep Q-Networks helps us overcome the maximization bias.
■ Dueling Deep Q-Networks can improve the estimation by enforcing a

structure of computation that resembles the internal structure of the Q-
values.

■ Experience Replay and especially Prioritized Experience Replay do
highly increase our efficiency with regard to data usage.

■ Are there more extensions available? Yes, and they are aggregated in
RAINBOW which combines DQN and the three mentioned above with:
distributional Q-learning, (n)-step returns, and noisy nets.

Current State of DQN

Chart 2

We just mentioned RAINBOW is estimating distributions of rewards.
This is very different to previous approaches. All previous methods assumed
that we are learning the expected value of a state or state-action pair.

Intro: To simplify the algorithm, we discretize the space of values. Instead
of assuming a value to be constant, we assume that it belongs to a set of
possible choices.
Necessary hyperparameters: A minimum value 𝒗𝒎𝒊𝒏 and a maximum
value 𝒗𝒎𝒂𝒙. We then discretize the range between 𝑣&'(and 𝑣&)* into 𝑵𝒂𝒕𝒐𝒎𝒔
elements. The values of those three variables are chosen manually and have
to be configured correctly. (Example: Rainbow uses 𝑣&'(= −10, 𝑣&)* = 10 and
𝑁)./&0 = 51 for Atari games with rewards clipped to -1 and 1).

𝑧' = 𝑣&'(+ 𝑖 − 1
𝑣&)* − 𝑣&'(
𝑁)./&0

𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑁)./&0}

Distributional RL - Discretization

Chart 3

Given this vector 𝒛 consisting of our atoms:

𝑧' = 𝑣&'(+ 𝑖 − 1
𝑣&)* − 𝑣&'(
𝑁)./&0

𝑓𝑜𝑟 𝑖 ∈ 1,… ,𝑁)./&0

We can create a prob. distribution by assigning each value in 𝒛 a
probability.
This can be achieved by letting our network 𝑄 output 𝑁)./&0 values per
action and normalizing those (𝑄 𝑠, 𝑎 ' is the i-th output of Q for s and a, 𝑝'
the probability that choosing a in s achieves value 𝑧'):

𝑝' =
𝑒1 0,) !

∑345
6"#$%& 𝑒1 0,) '

Now our network outputs a distribution of values instead of expected
values!

Distributional RL - Discretization

Chart 4

Okay got it, but how to learn those distributions?
Idea:
Estimate a target distribution and use a measure for the difference between
to distributions as optimization loss.

1. We have a realized reward.
2. We have a distribution of Q-values for all possible actions over a range of

values in the state after this step.

If we now assume that every time we start from 𝑠. and follow our policy, we
would yield the same reward this means that the distribution of values from
𝑠. , 𝑎. has the same shape as the distribution of values for the following s,a
combination, but is shifted towards the realized reward in that step and is
discounted according to 𝛾.

Distributional RL – Target Distribution

Chart 5

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Distributional RL

Chart 6

Shifting towards a target distribution:
Given for this step: (𝑠. , 𝑎. , 𝑟. , 𝑠.75) as usual. 𝑧 as defined by our hyper
parameters. 𝑝', the probabilities computed from our Q-network for
𝑄(𝑠.75, 𝑎′).
𝑎′ is chosen by selecting the action that has the maximum expected value
according to the output distribution: 𝑎′ = argmax)∈9 𝐸(𝑄 𝑠.75, 𝑎) .

We then can shift the output of the probability distribution for state 𝑠.75
towards the reward achieved in 𝑟. to achieve a valid distribution for 𝑠..

𝑧′' = 𝑟. + 𝛾𝑧
𝑝': = 𝑝'

This distribution has different values in 𝑧!

Distributional RL – Shifting and Compressing

Chart 7

Fitting the atoms:
It is necessary, that our distributions use the same set of atoms, to compute
a loss function that we can minimize.
We have to project the target distribution back onto the values available in
our output system.
Example Projection:
1. Initialize another probability vector 𝑝:: with 0.

2. Compute 𝑏 = ;!
(<=%!)

>*
and 𝑏? = 𝑏 and 𝑏@ = 𝑏 for all 𝑖 (𝑏@ and 𝑏? contain

the respective next lower and larger index in original 𝑧 for 𝑧':)
3. Then 𝑝A+

:: ← 𝑝A+
:: + 𝑝': ∗ (𝑏 − 𝑏@) and 𝑝A,

:: ← 𝑝A,
:: + 𝑝': ∗ (𝑏? − 𝑏)

If the 𝑧′ is too large or too small to fulfill 2. (The shift was so large, that
there are values with positive probability that exceed our allowed range),
account them to 𝑝5:: or 𝑝6"#$%&

:: .

Distributional RL - Projection

Chart 8

We can compute the cross-entropy or Kullback-Leibler-divergence of
both distributions and use this a loss function. Both do provide us
with a measure of how similar to prob. distributions are.
𝑝' = Prob. of choosing 𝑧' with the orig. dist., 𝑝':: = Prob. of choosing 𝑧' in the
target. dist.

Cross-entropy:

− J
'45

6"#$%&

𝑝':: log 𝑝'

Kullback-Leibler-Divergence:

J
'45

6"#$%&

𝑝'::log(
𝑝'::

𝑝'
)

RAINBOW uses KL, original distributional QL paper uses cross-entropy.

Distributional RL - Loss

Chart 9

Chart 10

■ The double network approach can be taken into account by using it to
predict the values for the target distribution.

■ The dueling network can still be implemented, as there is no limitation
on the internal structure of the network predicting the values used to
compute the probabilities.

■ Experience replay can still be applied as well.

Distributional RL – Extensions

Two extensions left!

■ We introduced (n)-step returns and importance sampling for Q-learning
some weeks ago.

■ The same principles can still be applied when using an estimator.
■ Interestingly: RAINBOW omits the use of importance sampling factors

even though it operates on a different policy. Why? Because we can
replace 𝜖-greedy with a different mechanism.

■ Remember:

𝐺.:.7(=J
C4.

.7(

𝛾C<.𝑟C

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐺.:.7(<5 + 𝛾(max)∈9
𝑄(𝑠.7(, 𝑎)

(n)-Step returns

Chart 12

For now we implemented exploration with 𝜖-greedy. New idea: Add noise to
the networks output.

A linear layer:
𝑦 = 𝑊𝑥 + 𝑏

A noisy linear layer:
𝑦 = 𝑊𝑥 + 𝑏 + (𝑊(/'0D⨀𝑒E)𝑥 + (𝑏(/'0D⨀𝑒A)

⨀ is the element wise product. 𝑒F and 𝑒A are randomly generated every
time we need to compute something. 𝑊(/'0D and 𝑏(/'0D have the same shape

as 𝑊 and 𝑏.
By adjusting 𝑊(/'0D and 𝑏(/'0D, the training process can reduce the noise, if it
causes too much harm in the divergence! If the values are far off only due
to noise à reduce their weights. But this can happen depending on the
state under assessment. Also manually tuning exploration rates is not
necessary anymore.

Overcoming 𝜖-greedy

Chart 13

Everything together:
■ We use capable ANNs for the estimation of our values.
■ We estimate distributions of values instead of expected values.
■ We use double learning to overcome the maximization bias.
■ We use dueling networks to take the structure of Q into account.
■ We use (n)-step returns to learn from delayed rewards.
■ We use noise in the network for exploration, the policy is greedy.
■ We use prioritized experience replay, to increase our data efficiency.
■ This is perfect, isn’t it?

No. We still can’t do anything when the action space is continuous.
Our perfect DQN system only works on discrete action spaces.
à Policy Gradients!

RAINBOW

Chart 14

Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…

Chart 15

Schedule

