
Dynamic Programming and Reinforcement Learning
Week 6b: Policy Gradients (2)

Rainer Schlosser und Alexander Kastius
Enterprise Platform and Integration Concepts

02.06.21

∇!𝐽 𝜙 ∝ 𝐸
∇!𝜋! 𝑎" 𝑠"
𝜋! 𝑎" 𝑠"

𝐺"

Inserting this in our gradient ascent update, we get the REINFORCE update
mechanism:

𝜙"#$ = 𝜙" + 𝜂
∇!𝜋!! 𝑎" 𝑠"
𝜋!! 𝑎" 𝑠"

𝐺"

Computation of 𝐺" can only be performed in the episodic case with a
guaranteed terminal state.

REINFORCE

Chart 2

Input: Parametric non-deterministic policy 𝜋! 𝑎 𝑠) with initial parameters
𝜙%.

Repeatedly perform:
1. Go through whole episode, following our policy.
2. Compute 𝐺" for all 𝑡

3. Apply 𝜙"#$ = 𝜙" + 𝜂
∇"'"! 𝑎" 𝑠"
'"! 𝑎" 𝑠"

𝐺" for all tuples (𝑠" , 𝑎" , 𝐺") to improve the

policy.

There is no real stopping criterion, as there is no measure of performance
by definition. Assuming the policy did not change for a long time, it can be
seen as “optimal”, but this is rarely going to happen.

REINFORCE

Chart 3

Our current implementation of REINFORCE does suffer from a severe
disadvantage: The variance of gradients is directly related to the variance of
the rewards, which, depending on the process under assessment might be
very high.

∇!𝑉 𝑠% ∝2
(∈*

𝜇(𝑥)2
+∈,

∇!𝜋! 𝑎 𝑥 𝑄' 𝑥, 𝑎

The current formulation of the policy gradient theorem allows a small
adjustment, which might help. We can introduce a state-dependent baseline
to reduce the variance of the gradient:

∇!𝑉 𝑠% ∝2
(∈*

𝜇 𝑥 2
+∈,

∇!𝜋! 𝑎 𝑥 (𝑄' 𝑥, 𝑎 − 𝑏(𝑥))

Variance Issues of REINFORCE

Chart 4

∇!𝑉 𝑠% ∝2
(∈*

𝜇 𝑥 2
+∈,

∇!𝜋! 𝑎 𝑥 (𝑄' 𝑥, 𝑎 − 𝑏(𝑥))

Does this change the expected value of our gradient?

2
+∈,

∇!𝜋! 𝑎 𝑥 𝑄' 𝑥, 𝑎 − 𝑏 𝑥 = 2
+∈,

∇!𝜋! 𝑎 𝑥 𝑄' 𝑥, 𝑎 −2
+∈,

∇!𝜋! 𝑎 𝑥 𝑏(𝑥)

2
+∈,

∇!𝜋! 𝑎 𝑥 𝑏 𝑥 = 𝑏 𝑥 ∇!2
+∈,

𝜋! 𝑎 𝑥 = 𝑏 𝑥 ∇!1 = 0

No it doesn‘t. But in practice, the variance of the gradient will become
smaller.

What can we use as 𝑏 𝑥 ?

Introducing Baselines

Chart 5

What can we use as 𝑏 𝑥 given a state 𝑥 = 𝑠"?

We want to minimize the variance of the gradient, which means we want to
choose a value that does not depend on 𝑎 but is usually close to 𝐺".

This makes the value of 𝑥 a natural choice.

𝜙"#$ = 𝜙" + 𝜂
∇"'"! 𝑎" 𝑠"
'"! 𝑎" 𝑠"

(𝐺"−𝑏(𝑠")) with 𝑏 𝑠" = 𝑉(𝑠")

Where do we get 𝑉(𝑠") from? We can’t use 𝐺" if we only see states rarely, as
we would usually then compute 𝐺" − 𝐺" = 0. Instead, we use a parametric

estimator for 𝑉(𝑠").

REINFORCE with Baselines

Chart 6

Required: A value estimator 𝑣(𝑠; 𝜙-) with parameters 𝜙-, a parametric policy
𝜋!#(𝑎|𝑠) with parameters 𝜙'.

1. Go through an episode, following our policy.
2. Compute 𝐺" for all 𝑡 in the episode.

3. Update the value estimator by minimizing 𝐺" − 𝑣 𝑠"; 𝜙-
. using gradient

descent:

𝜙- = 𝜂-∇!$
1
2
𝐺" − 𝑣 𝑠"; 𝜙-

.

+ 𝜙-

4. Update the policy by following the policy gradient theorem:

𝜙' ← 𝜙' + 𝜂'
∇!#𝜋!# 𝑎" 𝑠"
𝜋!# 𝑎" 𝑠"

(𝐺"−𝑣(𝑠"; 𝜙-))

Are there any disadvantages of REINFORCE that are not solved yet?

REINFORCE with Baselines

Chart 7

REINFORCE requires full trajectories, which are not always available.

In value estimation, temporal difference learning allowed omitting this
requirement and leads towards faster convergence. The same principle can
be reapplied on REINFORCE.

Core ideas:
■ Bootstrap 𝑉(𝑠"; 𝜙-) by replacing 𝐺" with 𝑟" + 𝑉(𝑠"#$; 𝜙-)
■ Bootstrap the target for the policy gradient by replacing 𝐺" with 𝑟" +

𝑉(𝑠"#$; 𝜙-).

Actor-Critic

Chart 8

Required: An estimator for 𝑣(𝑠; 𝜙-) with parameters 𝜙-, a parametric policy
𝜋!#(𝑎|𝑠) with parameters 𝜙'.

1. Go through an episode, following our policy.
2. At each step compute δ = 𝑟" + 𝑣(𝑠"#$; 𝜙-) − 𝑣 𝑠"; 𝜙-
3. Update the value estimator by minimizing 𝛿. using gradient descent:

𝜙- = 𝜂-∇!$δ
. + 𝜙-

4. Update the policy by following the policy gradient theorem:

𝜙' ← 𝜙' + 𝜂'
∇!#𝜋!# 𝑎" 𝑠"
𝜋!# 𝑎" 𝑠"

δ

Actor-Critic

Chart 9

All methods presented here, assumed 𝛾 = 1 for simplicity. The policy
gradient as well as the updates change slightly, if this is not the case.

Required: An estimator for 𝑣(𝑠; 𝜙-) with parameters 𝜙-, a parametric policy
𝜋!#(𝑎|𝑠) with parameters 𝜙'.

1. Go through an episode, following our policy.
2. At each step compute δ = 𝑟" + 𝛾𝑣(𝑠"#$; 𝜙-) − 𝑣 𝑠"; 𝜙-
3. Update the value estimator by minimizing 𝛿. using gradient descent:

𝜙- = 𝜂-∇!$δ
. + 𝜙-

4. Update the policy by following the policy gradient theorem:

𝜙' ← 𝜙' + 𝜂'
∇!#𝜋!# 𝑎" 𝑠"
𝜋!# 𝑎" 𝑠"

δ

Reintroducing Discounting

Chart 10

All previously mentioned methods do require a noticeable amount of hyper-
parameter tuning due to their complex setups, this is the case on for AC-
methods as well:
■ 𝑉 and 𝜋 and their internal setup, which includes the number of layers,

their width, internal adjustment mechanisms like batch-normalization
and regularization tools like dropout which all might work or not,
depending on the problem under assessment. Many times it is also
advantageous to share some early layers of the policy and value
network.

■ Learning rates 𝜂' and 𝜂-/𝜂/ (if there is a Q-estimator as well). Technically
more advanced optimizers like ADAM have even more parameters.

■ Discount factor 𝛾
■ Parameters 𝛼 and 𝛽 for PER if applicable
■ Exploration rate 𝜖 if applicable
■ The decay rates for all parameters where applicable.

Review: A bunch of hyper-parameters

Chart 11

The perfect AC-algorithm has yet to be found. But: There are many
different directions of research right now and at least 5 to 10
prominent alternatives available:
Stable Baselines, a set of reference implementations, incorporates the
following set, in addition to DQN:

■ DDPG (Deep Determinist Policy Gradient)
■ A2C (Advantage Actor Critic)
■ PPO (Proximal Policy Optimization)
■ SAC (Soft Actor Critic)
■ TD3 (Twin Delayed DDPG)

All of them incorporate one or several additions to naïve actor-critic.

Continuing Development

Chart 12

A Final Look at Soft Actor Critic:
SAC implements at least three additions to the AC algorithm as we’ve
developed it here:
■ It uses an off-policy approach for the baseline instead of policy related

value estimates and optimizes the policy based on Q-value estimates,
which in turn makes the whole approach work on off-policy generated
samples.

■ It reintroduces a second network for value estimation, which resembles
the double network trick known from DQN and other algorithms.

■ It adds entropy regularization.

Check https://arxiv.org/pdf/1801.01290.pdf for original paper

A Final ”Case Study” – Soft Actor Critic

Chart 13

https://arxiv.org/pdf/1801.01290.pdf

𝐽' 𝜙' = 𝐸 𝐷01 𝜋!# 𝑎" 𝑠"
𝑒2 3! ,+!;!%

𝑍(𝑠"; 𝜙2)

The goal is to minimize the KL-divergence between the policy and the policy
induced by the Q-value estimation. This allows off-policy training, as we can

compute this difference using only our estimation and the given policy.
𝑍 is the normalizing constant, which would usually be something like the

sum over 𝑒2 3,+;!% for all a. It is excluded here, because it does not show up
in the overall gradient.

There is a problem with this equation: To derive a gradient, during
backpropagation we would need to compute a gradient on a random
variable 𝑎", which is sampled from the policy. We can’t easily do this.

Off-Policy Actor Critic

Chart 14

https://stats.stackexchange.com/questions/199605/how-does-the-
reparameterization-trick-for-vaes-work-and-why-is-it-important

Reparametrization Trick

Chart 15

𝐽' 𝜙' = 𝐸 𝐷01 𝜋!# 𝑎" 𝑠"
𝑒2 3! ,+!;!%

𝑍(𝑠"; 𝜙2)

Solution: We reparametrize the policy. Instead of sampling from the policy,
we determine 𝑎 by sampling from a gaussian dist. feeding the sample in our

neural network as input and use the output as action.
𝑎" = 𝑓(𝜖"; 𝑠" , 𝜙')

𝐽' 𝜙' = 𝐸 𝐷01 𝜋!# 𝑓(𝜖"; 𝑠" , 𝜙') 𝑠"
𝑒2 3! ,6(8!;3! ,!#);!%

𝑍(𝑠"; 𝜙2)

This can be backpropagated, and the gradient becomes:

∇!#𝐽' 𝜙' = ∇!# log 𝜋!# 𝑎" 𝑠" + ∇+ log 𝜋!# 𝑎" 𝑠" − ∇+𝑄 𝑠" , 𝑎"; 𝜙2 ∇!#𝑓!#(𝜖"; 𝑠")

Reparameterization for SAC

Chart 16

■ Learning Q in SAC works similar to the way we learned Q before:

𝐽2 𝜙2 = 𝐸
1
2
𝑄 𝑠" , 𝑎"; 𝜙2 − 𝐸 𝑟" + 𝛾𝑉(𝑠"#$; 𝜙:)

.

■ In its first iteration, SAC included a third value estimator 𝑉(𝑠"#$; 𝜙:), to be
used in this equation. In later iterations this was replaced by computing
the value from a combination of the policy using 𝑓 and 𝑄.

■ Double network are introduced by keeping to different estimators 𝑄 with
different parameters and using the minimum of both, whenever a
computation requires an estimate.

Double Q-Network in SAC

Chart 17

Last but not least, the probably most important trick of SAC:
We introduce an entropy regularization factor. Regularization usually means
that an ML model has a special mechanism to avoid overfitting. In case of
RL means: We want to avoid to immediately converge towards near
deterministic policies, which do not explore enough.

Entropy can be seen as measure of ”unexpectedness” in a probability
distribution, usually relates to information theory. A probability distribution
that assigns equal probability to all possible choices of the has very high
entropy, a deterministic distribution (that assigns a single option probability
1) has a very low entropy. Given 𝑛 elements 𝑥; ∈ 𝑋, the entropy of a
distribution 𝑃 over support 𝑋 with probabilities 𝑃(𝑥;) is defined as:

𝐻 𝑋 = −2
;<$

=

𝑃 𝑥; log 𝑃(𝑥;)

Entropy Regularization in Values

Chart 18

We introduce entropy to SAC, by adding it to the value of a state and by
this, also to the values of 𝑠, 𝑎 pairs during Q-estimation:

𝐽: 𝜙: = 𝐸
1
2
𝑉(𝑠"; 𝜙:) − 𝐸+!~'"# +!|3! 𝑄 𝑠" , 𝑎"; 𝜙2 − log𝜋!# 𝑎"|𝑠"

.

When valuing a state, a bonus is given if the policy is very unpredictable at
this point. This leads to two effects:
■ The policy itself stays non-deterministic, unless a future state is of very

high value and thus, the Q-value is dominated by the value estimation as
well

■ The value estimation is higher for states which we know less about, e.g.
which the policy is not already focused on a single action.

■ Both overall massively increase SAC’s performance.

Entropy Regularization in SAC

Chart 19

https://arxiv.org/pdf/1801.01290.pdf

Is SAC better than the alternatives?

Chart 20

Week Dates Topic
1 April 21 Introduction
2 April 25/28 Finite + Infinite Time MDPs
3 May 2/5 Approximate Dynamic Programming (ADP) + DP Exercise
4 May 12 Q-Learning (QL) (not Mon May 9)
5 May 16/19 Q-Learning Extensions and Deep Q-Networks
6 May 23 DQN Extensions (not Thu May 26 “Himmelfahrt”)
7 May 30/June 2 Policy Gradient Algorithms
8 June 9 Project Assignments(not Mon June 6 “Pfingstmontag”)
…

Chart 21

Schedule

■ The project aims at understanding the impact of the different design choices
in the algorithms to extend the more theoretical knowledge from the first
half of the course. So usually, the focus should be put on the algorithm and
not on the problem you want to solve with it. Choosing a problem of your
choice to solve is still up to you, to allow you to choose one that shows the
advantages and disadvantages of the method you’re working on.

■ We will propose several topics next week.
■ But: Feel free to bring up your own idea.
■ We cannot guarantee, that everything will be possible within half a semester

with limited hardware (a full evaluation run of RAINBOW on the whole Atari
suite takes about 10 days on specialized hardware…)

Project Assignments

Chart 22

