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“The Free Lunch Is Over”  
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■  Number of transistors per 
CPU  increases 

■  Clock frequency stalls 

http://www.gotw.ca/publications/concurrency-ddj.htm 



Capacity vs. Speed (latency) 

Memory hierarchy: 
■  Capacity restricted by price/performance 
■  SRAM vs. DRAM (refreshing needed every 64ms) 

■  SRAM is very fast but very expensive 

 Memory is organized in hierarchies 
□  Fast but small memory on the top 
□  Slow but lots of memory at the bottom 
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Data Processing 
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In DBMS, on disk as well as in memory, 
 data processing is often: 
■  Not CPU bound 
■  But bandwidth bound 
■  “I/O Bottleneck” 
 

 CPU could process data faster 
 
 Memory Access: 
■  Not truly random (in the sense of constant latency) 
■  Data is read in blocks/cache lines 
■  Even if only parts of a block are requested 
 

Potential waste of bandwidth  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

Cache Line 1 Cache Line 2 



Memory Hierarchy 

■  Cache 
 Small but fast memory, which keeps data from 
main memory for fast access. 

 

 Cache performance is crucial 
■  Similar to disk cache (e.g. buffer pool) 
 

But: Caches are controlled by hardware. 
 

■  Cache hit 
 Data was found in the cache.  
 Fastest data access since no lower level is involved. 

■  Cache miss 
 Data was not found in the cache. CPU has to load 
 data from main memory into cache (miss penalty). 

CPU 

Cache 

Main 
Memory 
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Locality is King! 

To improve cache behavior 
■  Increase cache capacity 
■  Exploit locality 

□  Spatial: related data is close (nearby references are likely) 
□  Temporal: Re-use of data (repeat reference is likely) 

To improve locality 
■  Non random access (e.g. scan, index traversal): 

□  Leverage sequential access patterns 
□  Clustering data to a cache lines 
□  Partition to avoid cache line pollution  

(e.g. vertical decomposition) 
□  Squeeze more operations/information into a cache line  

■  Random access (hash join): 
□  Partition to fit in cache (cache-sized hash tables) 
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Motivation 

■  Hardware has changed 
□  TB of main memory are available 
□  Cache sizes increased 
□  Multi-core CPU’s are present 
□  Memory bottleneck increased 

■  Data/Workload 
□  Tables are wide and sparse 
□  Lots of set processing 

■  Traditional databases  
□  Optimized for write-intensive workloads 
□  show bad L2 cache behavior 
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Problem Statement 

■ DBMS architecture has not changed over decades 
■ Redesign needed to handle the changes in: 

□ Hardware trends (CPU/cache/memory) 
□ Changed workload requirements  
□ Data characteristics 
□ Data amount 
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Buffer pool 

Query engine 

Traditional DBMS Architecture 



Row- or Column-oriented Storage  

9 

Column Store Row Store 

SELECT *  
FROM Sales Orders  
WHERE Document Number = ‘95779216’ 

SELECT SUM(Order Value)  
FROM Sales Orders  
WHERE Document Date > 2009-01-20 
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Question + Answer 
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■ Exploit sequential access, leverage locality 

-> Column store 

■ Reduce I/O 

■ Compression 

■ Direct value access 

-> Fixed-length (compression schemes) 

■ Late Materialization 

■ Parallelize 

How to optimize an IMDB? 



Seminar Organization 



Objective of the Seminar 

•  Work on advanced database topics in the context of in-memory 
databases (IMDB) with regards to enterprise data management 

•  Get to know characteristics of IMDBs 

•  Understand the value of IMDBs for enterprise computing 

•  Learn how to work scientifically 

•  Fully understand your topic and define the objectives of your 
work 

•  Propose a contribution in the area of your topic  

•  Quantitatively demonstrate the superiority of your solution    

•  Compare your work to existing related work 

•  Write down your contribution so that others can understand and 
reproduce your results  
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Seminar schedule 

•  Today: Overview of topics, general introduction 

•  Tomorrow (17.4.): Q&A on topics, in depth topics 

•  22.4.: Send your priorities for topics to lecturers 
(david.schwalb@hpi.uni-potsdam.de) 

•  26.4.: Assignment of topics to students 

•  28. & 29.5.: Mid-term Presentations 

•  9. & 10.7.: Final Presentations 

•  19.7.: Deadline for final documentation 

•  Throughout the seminar: individual coaching by teaching staff 

•  Meetings (Room V-1.16) 
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Final Presentation 

■  Why a final presentation? 

□  Show your ideas and their relevance to others 

□  Explain your starting point and how you evolved your idea /
implementation 

□  Present your implementation, explain your implementations 
properties 
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Final Documentation 

•  10-12 pages, ACM format [1] 

•  Suggested Content: Abstract, Introduction into the topic, Related 
work, Implementation, Experiment/Results, Interpretation, Future 
Work 

•  Important! 

•  Related work needs to be cited 

•  Quantify your ideas / solutions with measurements  

•  All experiments need to be reproducible (code, input data) and 
the raw data to the experiment results must be provided 
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[1] http://www.acm.org/sigs/publications/proceedings-templates 



Grading 

•  6 ECTS 

•  Grading: 

•  30% Presentations (Mid-term 10% / Final 20%) 

•  30% Results 

•  30% written documentation 

•  10% general participation in the seminar 
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Topic Assignment   

•  Each participant sends list of top 3 topics in order of preference to 
lecturers by 22.4. 

•  Topics are assigned based on preferences and skills by 26.4. 
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Topics (i) – Data Structures 

1)  Partitioned Bitvector for In-Memory Column-Store 
A bitvector that allows for multiple partitions with different value-id-widths 
(bits) to create a merge-free insert-only column store. For the seminar, an 
evaluation of the performance impact for lookups is the main topic. 

2) Vertical Bitvector 

A modified bitvector storage layout of values on a cacheline to enable 
faster decompression of multiple values at once due to better utilization of 
SSE units. [1] 

3) Unsorted Dictionaries 
Evaluation of a lookup-table scheme, enabling fast range queries with 
unsorted dictionaries. The idea is to create a cache-sized probing-bitvector 
by scanning matching positions on the dictionary, which can be accessed 
fast while scanning the column. 

[1] https://github.com/grundprinzip/bitcompressedvector 
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Topics (ii) – Index Structures 

4) Default Value Index 
A data structure to store very sparse columns without sacrificing OLTP 
performance. The idea is to only store exceptions and a bit-index to 
mark non-default positions. 

5) Multi Column Indices 

Classic Multi-Column Indices use a tree-structure to index tuples. In 
column store this is a cumbersome solution, because values are 
stored as encoded integers and these are used as long as possible 
(late materialization), and values that would form one tuple are in 
different columns.  
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Topics (iv) – Join Algorithms 

6) Multi Column Join Algorithms 
When joining tables with multiple key columns, column stores need to 
materialize all keys or need an uncompressed tree structure (actual 
values not value-ids). The goal is an optimized join algorithm enabling 
fast joins over multiple columns. 

7) Join Algorithms on shared Dictionaries 

Columns that store values from the same application domain could be 
stored with a shared dictionary and joins could be performed directly 
on value-ids instead of values. 

8) Cache-Optimized Parallel Join 

Evaluation/Development of a cache-sensitive join algorithm for 
HYRISE. 
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Topics (v) – User Interface 

9) Analytical User Interface for HYRISE 
A graphical, drag and drop based javascript user interface to get fast 
information about the loaded data, its value distribution, distinct 
values etc, similar to Visual Intelligence. 

 

10) Set-based Query Language 

A query language or graphical query tool that allows a user to define 
the desired result in a set-based manner, similar to QlikView. The user 
can define a query by defining subsets of tables etc, natural joins are 
performed automatically. 
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Topics (vi) 

11) Branching Deltas (Simulation) 
For some applications, many of simulations need to be performed. Since they 
typically require write access, an idea would be to have separate deltas buffers for 
each simulation. The simulation can then be run in parallel, in order to find the best 
set of input parameters. 
12) Result Set Compression 
Currently, result sets are transferred “as is” to the client, where it is simply read 
row-by-row. In scenarios where the connection between database and applications 
is limited (mobile, cloud), the idea of compression the result set might lead to 
significant performance gains. 
13) Memory Compression Algorithms in Hardware (PPC) 
Modern PowerPC processors have hardware supported main memory compression. A 
first evaluation could investigate how well it compresses enterprise data, how 
performance is affected, and how a row store compares to a column store. 
14) Rough query runtime prediction based on optimizer results 
During development, it is desirable to get rough estimates of how long a query will 
take to execute. The idea for this seminar is to use the output of the the database 
query optimizer to roughly estimate the execution time of given SQL queries. 
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Topics (vii) - Database Co-Processors 

15) Execution model for co-processors 
Based on the memory bandwidth limitation of database co-processors, 
multiple execution models are possible. Evaluation of the following 
different models: Co-Process, Procedural Language Architecture, GPU 
hosted data. 

16) Co-processor integration into databases 

Evaluation how a co-processor can be integrated with a database for 
application specific logic with SAP HANA (AFL) or HYRISE. 

17) Automatic execution unit detection in a heterogeneous system 
In a heterogeneous system, the capabilities of database (co-)processors 
differ with respects to bandwidth, parallelization, clock frequency. To 
determine the best suited execution unit an execution model needs to be 
created based on device benchmarks and a programs current workflow. 
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Topics (viii) - Database Co-Processors 

18) Optimized co-processor data structures 
Database co-processors used for application specific tasks, such as 
prediction algorithms or scientific calculations, require the to have a 
different layout than database tables. The student working on this 
topic will evaluate which data structures are favorable for different co-
processors and algorithms. 

19) Automatic code optimization for co-processors 

As a heterogeneous programming framework, OpenCL enables the 
developer to write a single program that can be executed on many 
different hardware platforms. Nevertheless, the code needs to be 
optimized for each device to run optimal. The goal will be to optimize 
the code written in OpenCL C for different devices automatically based 
on micro benchmarks. 
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