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“The Free Lunch Is Over” 

– Number of 
transistors per CPU  
increases 

– Clock frequency 
stalls
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Capacity vs. Speed (latency)
• Memory hierarchy:

– Capacity restricted by price/performance 
– SRAM vs. DRAM (refreshing needed every 64ms) 
– SRAM is very fast but very expensive 

	 Memory is organized in hierarchies

• Fast but small memory on the top 
• Slow but lots of memory at the bottom
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Data Processing
• In DBMS, on disk as well as in memory, data processing is 

often:

• Not CPU bound 
• But bandwidth bound 
• “I/O Bottleneck” 

• CPU could process data faster
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• Memory Access:

• Not truly random (in the sense of constant latency) 
• Data is read in blocks/cache lines 
• Even if only parts of a block are requested 

• Potential waste of bandwidth V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Cache	Line	1 Cache	Line	2



Memory Hierarchy
■ Cache 

Small but fast memory, which keeps data from  
main memory for fast access. 

	Cache performance is crucial

■ Similar to disk cache (e.g. buffer pool) 

But: Caches are controlled by hardware. 

■ Cache hit 
Data was found in the cache.  
Fastest data access since no lower level is involved. 

■ Cache miss 
Data was not found in the cache. CPU has to load data from 
main memory into cache (miss penalty).

CPU

Cache

Main	Memory
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Locality is King!
• To improve cache behavior 

– Increase cache capacity 
– Exploit locality 

• Spatial: related data is close (nearby references are likely) 
• Temporal: Re-use of data (repeat reference is likely) 

• To improve locality 
– Non random access (e.g. scan, index traversal): 

• Leverage sequential access patterns 
• Clustering data to a cache lines 
• Partition to avoid cache line pollution  

(e.g. vertical decomposition) 
• Squeeze more operations/information into a cache line  

– Random access (e.g., hash joins): 
• Partition to fit in cache (cache-sized hash tables)
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Motivation
– Hardware has changed 

• TB of main memory are available 
• Cache sizes increased 
• Multi-core CPU’s are present 
• Memory bottleneck increased 
• NUMA (and NUMA on a NUMA?) 

– Data / Workload 
• Tables are wide and sparse 
• Lots of set processing 

– Traditional databases  
• Optimized for write-intensive workloads 
• Show bad L2 cache behavior
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Problem Statement

– DBMS architecture has not changed over decades 
– Redesign needed to handle the changes in: 

• Hardware trends (CPU/cache/memory) 
• Changed workload requirements  
• Data characteristics 
• Data amount
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Row- or Column-oriented Storage 
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Column StoreRow Store

SELECT * 

FROM Sales Orders 

WHERE Document Number = ‘95779216’

SELECT SUM(Order Value) 

FROM Sales Orders 

WHERE Document Date > 2009-01-20



Question & Answer
•  
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■ Exploit sequential access, leverage locality 
-> Column store 

■ Reduce I/O 
■ Compression 

■ Direct value access 
-> Fixed-length (compression schemes) 

■ Late Materialization 
■ Parallelize

How to optimize an IMDB?



Seminar Organization
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Objective of the Seminar
• Work on advanced database topics in the context of in-

memory databases (IMDB) with regards to enterprise data 
management 

• Learn how to work scientifically 
• Fully understand your topic and define the objectives of your work 
• Propose a contribution in the area of your topic  
• Quantitatively demonstrate the superiority of your solution    
• Compare your work to existing related work 
• Write down your contribution so that others can understand and 

reproduce your results 
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Seminar schedule
• Today (15.10.): Overview of topics, general introduction 
• Thursday (27.10.): In-memory DB Basics & HYRISE (if you’re interested) 

• 22.10.: Send your priorities for topics to martin.boissier@hpi.de 

• Planned Schedule

– 15./17.12.2015: Mid-term presentation 
– 16./18.02.2016: Final presentation (tbc) 
– 29.02.2016: Peer Reviewing (tbc) 
– 20.03.2016: Paper hand-in (tbc) 

• Throughout the seminar: individual coaching by teaching staff 
• Meetings (Room V-2.16)

13



Final Presentation
–Why a final presentation? 
• Show your ideas and their relevance to others 
• Explain your starting point and how you evolved your 

idea /implementation 
• Present your implementation, explain your 

implementations properties 
• Sell your contribution! Why does your work qualify as 

rocket science?
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Peer Reviewing
– Each student will be assigned a colleague’s paper 

version (~2 weeks before paper hand-in) 
• Review will be graded 
• Annotate PDF for easy fixes (e.g., typos) 
• Short summary (2-3 pages in Word) about the paper’s 

content and notes to the author how to further improve 
his paper 

– Expected to be done in the week from February 
29 to March 4
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Final Documentation
• 7-9 pages, IEEE format [1] 
• Suggested Content: Abstract, Introduction into the 

topic, Related work, Implementation, Experiment/
Results, Interpretation, Future Work 

• Important! 
• Related work needs to be cited 
• Quantify your ideas / solutions with measurements  
• All experiments need to be reproducible (code, input 

data) and the raw data to the experiment results must 
be provided

16
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Grading
• 6 ECTS 
• Grading: 
• 30% Presentations (Mid-term 10% / Final 20%) 
• 30% Results 
• 30% Written documentation (Paper) 
• 10% Peer Review
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Topic Assignment		
• Each participant sends list of top three topics 

in order of preference to lecturers by 22.10. 
• Topics are assigned based on preferences 

and skills by 26.10.
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HYRISE
• Open source IMDB 
• Hosted at https://github.com/hyrise 
• C++11 
• Query Interface: Query plan or stored 

procedures
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Recommended Papers for Intro
• Plattner, VLDB 2014: The Impact of Columnar In-

Memory Databases on Enterprise Systems 

• Grund et al. VLDB 2010: HYRISE—A Main Memory 

Hybrid Storage Engine  

• Krueger et al. VLDB 2012: Fast Updates on Read-

Optimized Databases Using Multi-Core CPUs
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Topics
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Topics
• In-Memory Performance & HYRISE 
• HYRISE topics (indices, NVRAM, replication) 
• SGI topics (cache coherence) 
• Co-processing (GPU and Xeon Phi) 

• Workload analyses & benchmarking 
• Performance evaluations (relational vs. k/v) 
• Analyzing synthetic benchmarks (TPC-C/E)
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dispatching part that allows an effortless extension with
different algorithms.

• We created an easy to use HYRISE cluster management
tool. It can be used to automatically create a cluster based
on a provided configuration.

• We performed a modified version of the CH benCHmark
on a HYRISE-R cluster.

In the next Section we will present the related works, on
which our work is based. In the Section III we will give a short
summary of HYRISE-R and then describe the architecture of
our dispatcher and our HYRISE cluster management tool. In
the following Section we present the results we got from the
benchmarks we executed on a HYRISE cluster. In Section V
we discuss the future work and in the last section we give a
summary of this paper.

II. RELATED WORK

David Schwalb et al. presented in [2] a replication extension
for the in-memory database HYRISE. They implemented
the communication of the database instances. Besides, they
build a simple dispatcher. This dispatcher uses a round-robin
distribution algorithm. This paper continues the work on the
dispatcher.

Another IMDB replication approach is presented by Tobias
Mühlbauer et al. in [5]. They chose a different algorithm to
distribute the queries over the instances. Their solution was
to use a fixed number of threads for each database which are
handling the arriving requests sequentially. They called these
threads streams.

III. IMPLEMENTATION

In this section we will give a short introduction into the
existing replication mechanism in HYRISE provided by the
HYRISE-R extension. Then we will present the architecture
of the dispatcher we implemented. Finally we will introduce
our HYRISE cluster management tool.

A. HYRISE-R

As shown in Figure 1, the architecture of a HYRISE-R
cluster is based on the master slave principle. Hence, a cluster
consists of one master database instance, the primary node, and
several slave instances, the replicas. The primary node handles
all write requests that are send to the cluster. In addition, it
can execute read queries. The replicas can only execute read
queries which do not change the data they are operating on.

The primary node and the replicas have to be synchronized
in order to have the same data. Therefore, the primary node
propagates changes of the data via a network connection to the
replicas. In order to reduce the exchanged data, the changes are
collected and transmitted after a certain time interval, which
is called lazy replication.

Because the cluster should detect a failed primary node, a
heartbeat is sent by the primary node to the replicas. If the
replicas do not receive a heartbeat in a certain interval, the next
replica will take over the position as master instance. The new

Figure 1. Overview of the HYRISE-R architecture

primary node will inform the dispatcher that the old master
failed and that it takes over the work as primary node.

The dispatcher of HYRISE-R implements a simple round-
robin distribution approach for incoming read queries. Arriving
write queries are sent to the primary node only, because only
the primary node is allowed to propagate changes to the other
instances. The work on the dispatcher is the main focus of this
work.

B. Dispatcher
Since the basic HYRISE-R dispatcher was written in C, we

decided to rewrite the dispatcher in C++. The reason is that
parts of the old dispatcher could be used without a change
such as the network handling while we could use advanced
constructs of the C++ standard library, for example queues,
threads and concurrency control mechanisms. In addition, the
C++ standard library offers smart pointers, which automat-
ically handle the memory management and thus reduce the
possibility of memory leaks. Finally, rewriting the dispatcher
with the object-oriented programming paradigm improved
the structure of the code and increased the maintainability.
Figure 2 shows an overview of the architecture of the new
dispatcher. The sheduling algorithm that is displayed is the
round robin algorithm.

As a first step, we added a runtime configuration to the
dispatcher. The configuration has to be stored by the user in
a file and this file has to be passed to the dispatcher as a start
parameter. The file contains information about the database
instances such as their network address and settings for the
dispatcher such as the distribution algorithm to use.

We decided to use a configuration file instead of a header file
so that the configuration of a cluster could be changed without
the need of recompiling the dispatcher. The configuration file
uses the JavaScript Object Notation (JSON) format to encode
the data. We preferred to use JSON instead of other data

K-Safety in Hyrise-R
• Project


• Hyrise-R - Scale-Out and Hot-Standby version of 
Hyrise 

• Hyrise-R implements Lazy Master Replication 

• Tasks

• Evaluate and implement K-Safety for Hyrise-R 
• Demo scenario 
• Performance evaluation 

• Technologies

• Hyrise 
• C/C++

23Stefan Klauck



dispatching part that allows an effortless extension with
different algorithms.

• We created an easy to use HYRISE cluster management
tool. It can be used to automatically create a cluster based
on a provided configuration.

• We performed a modified version of the CH benCHmark
on a HYRISE-R cluster.

In the next Section we will present the related works, on
which our work is based. In the Section III we will give a short
summary of HYRISE-R and then describe the architecture of
our dispatcher and our HYRISE cluster management tool. In
the following Section we present the results we got from the
benchmarks we executed on a HYRISE cluster. In Section V
we discuss the future work and in the last section we give a
summary of this paper.

II. RELATED WORK

David Schwalb et al. presented in [2] a replication extension
for the in-memory database HYRISE. They implemented
the communication of the database instances. Besides, they
build a simple dispatcher. This dispatcher uses a round-robin
distribution algorithm. This paper continues the work on the
dispatcher.

Another IMDB replication approach is presented by Tobias
Mühlbauer et al. in [5]. They chose a different algorithm to
distribute the queries over the instances. Their solution was
to use a fixed number of threads for each database which are
handling the arriving requests sequentially. They called these
threads streams.

III. IMPLEMENTATION

In this section we will give a short introduction into the
existing replication mechanism in HYRISE provided by the
HYRISE-R extension. Then we will present the architecture
of the dispatcher we implemented. Finally we will introduce
our HYRISE cluster management tool.

A. HYRISE-R

As shown in Figure 1, the architecture of a HYRISE-R
cluster is based on the master slave principle. Hence, a cluster
consists of one master database instance, the primary node, and
several slave instances, the replicas. The primary node handles
all write requests that are send to the cluster. In addition, it
can execute read queries. The replicas can only execute read
queries which do not change the data they are operating on.

The primary node and the replicas have to be synchronized
in order to have the same data. Therefore, the primary node
propagates changes of the data via a network connection to the
replicas. In order to reduce the exchanged data, the changes are
collected and transmitted after a certain time interval, which
is called lazy replication.

Because the cluster should detect a failed primary node, a
heartbeat is sent by the primary node to the replicas. If the
replicas do not receive a heartbeat in a certain interval, the next
replica will take over the position as master instance. The new

Figure 1. Overview of the HYRISE-R architecture

primary node will inform the dispatcher that the old master
failed and that it takes over the work as primary node.

The dispatcher of HYRISE-R implements a simple round-
robin distribution approach for incoming read queries. Arriving
write queries are sent to the primary node only, because only
the primary node is allowed to propagate changes to the other
instances. The work on the dispatcher is the main focus of this
work.

B. Dispatcher
Since the basic HYRISE-R dispatcher was written in C, we

decided to rewrite the dispatcher in C++. The reason is that
parts of the old dispatcher could be used without a change
such as the network handling while we could use advanced
constructs of the C++ standard library, for example queues,
threads and concurrency control mechanisms. In addition, the
C++ standard library offers smart pointers, which automat-
ically handle the memory management and thus reduce the
possibility of memory leaks. Finally, rewriting the dispatcher
with the object-oriented programming paradigm improved
the structure of the code and increased the maintainability.
Figure 2 shows an overview of the architecture of the new
dispatcher. The sheduling algorithm that is displayed is the
round robin algorithm.

As a first step, we added a runtime configuration to the
dispatcher. The configuration has to be stored by the user in
a file and this file has to be passed to the dispatcher as a start
parameter. The file contains information about the database
instances such as their network address and settings for the
dispatcher such as the distribution algorithm to use.

We decided to use a configuration file instead of a header file
so that the configuration of a cluster could be changed without
the need of recompiling the dispatcher. The configuration file
uses the JavaScript Object Notation (JSON) format to encode
the data. We preferred to use JSON instead of other data

Elasticity in Hyrise-R
• Project


• Hyrise-R - Scale-Out and Hot-Standby version of Hyrise 
• Hyrise-R implements Lazy Master Replication 

• Tasks

• Implement Elasticity for Hyrise-R 
• Demo scenario 
• Smart query distribution 

• Different indices 
• Different latencies in federated cloud 

• Technologies

• Hyrise 
• C/C++ 
• Docker

24Stefan Klauck



Detection of compound events in 
spatio-temporal football data

• Project:

• The usage of spatial-temporal data increased strongly in recent 

years (e.g. performance analytics in sports) 
• Provided data for football games of the German Bundesliga 

• 1.5 million position information per game  
• Manually tracked event list  

• Problem: the event list is tracked manually, is not synchronized with 
the position information, and contains errors   

• Goal:

• Implementation and evaluation of algorithms to automatically detect 

compound events in positional data of football games  
• Leveraging the parallel computation capabilities of coprocessors

25Keven Richly



Data Tiering / Aging
• Data Aging: within its life time, data usually loses 

relevance and can be stored more price-efficient 
• Data Tiering: storing (evicting) data on different 

storage tiers based on their access frequency / 
relevance 
• Classical databases’ caching: 

hot data is cache in DRAM 
• Modern main memory databases (“anti-caching”): 

cold data is moved to secondary storage
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Simplified Data Tiering 
for HYRISE

• Project:

• Data Tiering can be transparently handled by APIs, which tier 

data based on a given temperature 
• The idea: while retaining the performance superiority of 

IMDBs, find columns that are never scanned and only 
accessed for point-accesses 

• These cold columns are moved out of DRAM

27accessed in
query evaluation

accessed only for
tuple reconstruction

majority
tuple accesses

Martin Boissier



Simplified Data Eviction 
for HYRISE

• Tasks:

• Set data temperatures based on expected accesses 
• Storage “drives”: 
• emulated RAM-disk with adjustable characteristics 
• top-notch PCI-e NAND Flash with 6+ GB/s 

• Goal:

• Evaluate and implement data tiering for HYRISE 
• Measure performance for industry-standard 

benchmark TPC-C

28Martin Boissier



How to Sort a Table
• Project:


• SAP HANA can partition tables 
into a hot partition and a cold 
partition (on SCM) 

• Given an SQL workload, sort a 
table optimally to gather full-width 
accesses in the hot partition 

• Goal:

• Evaluation of a optimal sorting 

approach on SAP HANA for a 
real enterprise workload

29
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An NVRAM-emulating Allocator
• Project:


• NVRAM is coming, but there is no hardware yet 
• Emulation is complicated and requires specialized hardware 

• Goal:

• Exploit NUMA latencies in order to allocate memory (e.g., 

using move_page) on a distant NUMA node, 
which has similar  
latency/bandwidth  
characteristics

30Martin Boissier



Relaxed Cache Coherence
• Cache Coherence on the SGI UV300


• Processors need to keep CPU caches 
coherent with the memory 

• When two processors access the same 
address, they need to see the same 
value 

• Ensuring cache coherence is expensive, 
more expensive across NUMA nodes, 
and even more so across blades 

• Can we improve performance by 
selectively working around coherence 
protocols?

31Markus Dreseler



Relaxed Cache Coherence
• Setup


• We have an SGI machine with 480 logical cores and 12 TB DRAM 
• SGI is very interested and will provide support for the project 

• Tasks

• Step 1: in micro benchmarks, identify the cost of coherence 
• Step 2: measure performance costs in HYRISE and identify 

potential points for snapshot coherence 
• Step 3: implement optimizations and benchmark 

• Prerequisites

• this project requires solid C++ knowledge

32Markus Dreseler



TPC-DS on HYRISE
• Project


• TPC-DS is a well-known benchmark in the area of decision 
support 

• Read-only: only selects are performed, no updates 
• Queries are long-running and complex 

• Tasks

• Step 1: for a selected number of queries, write JSON queries 

for HYRISE 
• Step 2: implement needed operators, such as IN 
• Step 3: optimize performance of query plans

33Markus Dreseler



In-Memory Database 
Coprocessing

• Status Quo: 
• Application logic moves closer to the database layer 
• Compute intensive, long running application transactions 

consume computational power of the database system 
• Classical database tasks have less available resources 

• Solution: 
• Coprocessors like Nvidia’s Tesla or Intel’s Xeon Phi can 

be used to increase the amount of computational power 
for specific application logic within the database system
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In-Memory Database Coprocessing

Application Example

• Application Example: 
Product Cost Calculation 

• Logic can be expressed as 
system of linear equations 

• Matrix inversion and matrix 
vector operations can be 
used to solve the problem 
efficient on coprocessors
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In-Memory Database Coprocessing

Topic: Database Throughput 

• Hypothesis: 
• Coprocessors increase the throughput 

within an application logic enriched 
database system 

• Goal: 
• Improve an existing benchmark to prove 

the hypothesis
36Christian Schwarz



In-Memory Database Coprocessing

Topic: Application Performance (1/2)
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In-Memory Database Coprocessing

Topic: Application Performance (2/2)
• Hypothesis: 
• Placing the database directly on the coprocessor 

improves application performance significantly 

• Goal: 
• Replace database layer used by the current 

prototype, leveraging a coprocessor database 
• Improve the overall performance characteristics 

of the application
38Christian Schwarz



A Federated In-Memory 
Database for Life Sciences

• Tasks

• Connect distributed databases to form a federated 

in-memory database system 
• Benchmark 

• Sensitive data must reside locally 
• Minimal data exchange between nodes 
• Fast and complete query propagation 

• Goal

• Provide an uniform interface to enable 

distributed analysis of heterogeneous 
medical data 

• Technologies

• HANA 
• C++
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Drug Development 
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Attributes:	
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Workload Analyses & 
Benchmarking
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Synthetic Benchmarks: How 
synthetic are they really?

• Project:

• Plattner et al. found that benchmarks do 

not reflect the properties of real-world 
systems 

• Many research paper make assumptions 
that do not reflect real systems in any way 

• How do both synthetic benchmarks 
compare to real enterprise systems?

41[2] Plattner, The Impact of Columnar In-Memory Databases on Enterprise Systems, VLDB 2014



Synthetic Benchmarks: How 
synthetic are they really?

• Tasks:

• Trace and analyze synthetic benchmarks 
• Determine and evaluate relevant characteristics for 

database performance (index usage, expensive 
stateements, …) 

• Analyze each workload thoroughly and compare with 
traces of a real ERP system 

• Goal:

• Thorough comparison of a productive enterprise 

system with synthetical enterprise benchmarks

42Martin Boissier



Enterprise systems are diverse 

Non-functional system characteristics, e.g.,  
flexibility, performance, impact the data model design 

Example: medical information systems often use an entity-
attribute-value (EAV) model  

» How does that work with an columnar IMDB? 
»Would it make sense to use that in other domains as well? 
»…

Suitability of an EAV model in 
IMDBs

43Martin Lorenz



Suitability of an EAV model in 
IMDBs

• Tasks

• Implementation of key-value (KV)/EAV data model for KV Store and IMDB 
• Benchmark 

• Performance for different query classes 
• Memory consumption 

• Goal

• Comparison of differences WRT performance and memory usage 
• Identification of query classes that perform comparatively poor on KV stores 

• Technologies

• HANA 
• Cassandra (Scylla)
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Thank you.
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