In-Memory Data
Management Research

Martin Boissier, Markus Dreseler

October 2015

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

“The Free Lunch Is Over”

Dual-Core Itanium 2 = /
o |]

Intel CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun) y

o

A
@ A
A
o A
am ° Ll A
L) AL
L J L] A A
A
e oo A A
= A
=
[] A A A
' ! + | Transistors (000)

@ Clock Speed (MHz)
X] aPower (W)
@ Perf/Clock (ILP)

1975 1980 1985 1990 1995 2000 2005 2010

[Source: http://www.gotw.ca/publications/concurrency-ddj.htm)]

— Number of
transistors per CPU
Nncreases

— Clock frequency
stalls

Capacity vs. Speed (latency)

* Memory hierarchy:
— Capacity restricted by price/performance
— SRAM vs., DRAM (refreshing needed every 64ms)
— SRAM is very fast but very expensive

=> Memory is organized in hierarchies
* Fast but small memory on the top
* Slow but lots of memory at the bottom

technology latency
SRAM <1lns
SRAM ~1ns
SRAM <10ns
DRAM 100 ns
~ 10 000 000 ns

(10 ms)

size
bytes
KB

MB

GB
B

Data Processing

- In DBMS, on disk as well as in memory, data processing is
often:

 Not CPU bound
e But bandwidth bound
« “/O Bottleneck’

=) CPU could process data faster

- Memory Access:
e Not truly random (in the sense of constant latency)
e Data is read in blocks/cache lines
e Even if only parts of a block are requested

:>P0teﬂﬂal \/\/aSte Of baﬂdV\/idth V1| V2 v3ﬁv5 V6 | V7 | V8 | V9 | V10

Cache Line 1 Cache Line 2

Memory Hierarchy

m Cache
Small but fast memory, which keeps data from
main memory for fast access. PU

=» Cache performance is crucial
m Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

m Cache hit
Data was found in the cache.
Fastest data access since no lower level is involved.

m Cache miss
Data was not found in the cache. CPU has to load data from
main memory into cache (Mmiss penalty).

Locality is King!

* Jo improve cache behavior
— Increase cache capacity
— Exploit locality

« Spatial: related data is close (nearby references are likely)
» Temporal: Re-use of data (repeat reference is likely)

* o improve locality

— Non random access (e.g. scan, index traversal):
* Leverage sequential access patterns
* Clustering data to a cache lines

* Partition to avoid cache line pollution
(e.g. vertical decomposition)

* Sqgueeze more operations/information into a cache line
— Random access (e.g., hash joins):
* Partition to fit in cache (cache-sized hash tables)

Motivation

— Hardware has changed

1B of main memory are available
Cache sizes increased
Multi-core CPU's are present
Memory bottleneck increased
NUMA (and NUMA on a NUMA?)

— Data / Workload
* Tables are wide and sparse
* Lots of set processing
— [raditional datalbases
* Optimized for write-intensive workloads
* Show bad L2 cache behavior

Problem Statement

— DBMS architecture has not changed over decades

— Redesign needed to handle the changes in:

* Hardware trends (CPU/cache/memory)

* Changed workload requirements
* Data characteristics
e Data amount

Query engine

Buffer pool

— —
[[

Me— ~~ P~ ~ M

—] | — | —
[T [| L 1 (=

Traditional DBMS Architecture

Row- or Column-oriented Storage

SELECT *
FROM Sales Orders
WHERE Document Number = ‘95779216’

SELECT SUM(Order Value)
FROM Sales Orders
WHERE Document Date > 2009-01-20

Row Store

Column Store

Row

Row

Row

Row

Doc
Num

Doc Sold- Value
Date To

Sales
Status Org

Row

Row

Row

Row

Doc
Num

Doc Sold- Value
Date To

Sales

Status Or
)

Question & Answer

* How to optimize an IMDB"

m Exploit sequential access, leverage locality
-> Column store
m Reduce /O
m Compression
m Direct value access
-> Fixed-length (compression schemes)
m | ate Materialization

m Parallelize

10

Seminar Organization

Objective of the Seminar

* \Work on advanced database topics in the context of in-
memory databases (IMDB) with regards to enterprise data

management

* Learn how to work scientifically

Fully understand your topic and define the objectives of your work
Propose a contribution in the area of your topic

Quantitatively demonstrate the superiority of your solution
Compare your work to existing related work

Write down your contribution so that others can understand and
reproduce your results

Seminar schedule

Today (15.10.): Overview of topics, general introduction
Thursday (27.10.): In-memory DB Basics & HYRISE

22.10.: Send your priorities for topics to martin.boissier@hpi. de

Planned Schedule

— 15./17.12.2015: Mid-term presentation
— 16./18.02.2016: Final presentation (tbc)
— 29.02.2016: Peer Reviewing (tbc)

— 20.03.2016: Paper hand-in (tbc)

Throughout the seminar: individual coaching by teaching staff
Meetings (Room V-2.106)

Final Presentation

—\Why a final presentation”
« Show your ideas and their relevance to others

* Explain your starting point and how you evolved your
idea /implementation

* Present your implementation, explain your
Implementations properties

» Sell your contribution! Why does your work qualify as
rocket science”

Peer Reviewing

— Each student will be assigned a colleague’'s paper
version (~2 weeks before paper hand-in)
* Review will be graded
» Annotate PDF for easy fixes (e.g., typos)

e Short summary (2-3 pages in Word) about the paper’s
content and notes to the author how to further improve
Nis paper

— Expected to be done in the week from February
29 10 March 4

Final Documentation

* /-9 pages, IEEE format [1]

* Suggested Content: Abstract, Introduction into the

topic, Related work, Implementation, Experiment/
Results, Interpretation, Future Work

* |[mportant!
* Related work needs to be cited
« Quantify your ideas / solutions with measurements

* All experiments need to be reproducible (code, input
data) and the raw data to the experiment results must
e provided

[1] http://www.ieee.org/conferences_events/conferences/publishing/templates. html

Grading

* 6 ECTS

* Grading:
» 30% Presentations (Mid-term 10% / Final 20%)
* 30% Results
« 30% Written documentation (Paper)

* 10% Peer Review

Topic Assignment

* Each participant sends list of top three topics
N order of preference to lecturers by 22.10.

* [opics are assigned based on preferences
and skills by 26.10.

HYRISE

Open source IMDB
Hosted at https://github.com/hyrise
C++11

Query Interface: Query plan or stored
orocedures

Recommended Papers for Intro

* Plattner, VLDB 2014 The Impact of Columnar In-

Memory Databases on Enterprise Systems
* Grund et al. VLDB 2010: HYRISE—A Main Memory
Hybrid Storage Engine

* Krueger et al. VLDB 2012 Fast Upaates on Read-
Optimized Databases Using Multi-Core CPUSs

Topics

Topics

HYRISE topics
SGl topics
Co-processing

Performance evaluations
Analyzing synthetic benchmarks

K-Safety in Hyrise-R

* Project
* Hyrise-R - Scale-Out and Hot-Standby version of
Hyrise
* Hyrise-R implements Lazy Master Replication

J\ Write workload I‘IJ Read workload
Y

» Tasks
» Evaluate and implement K-Safety for Hyrise-R
* Demo scenario
» Performance evaluation

Dispatcher

« Technologies e
' Write & read read requests
« Hyrise requests
e C/CH++

|
|
|
|
| HYRISE o HYRISE ? HYRISE
: primary node replica 1 - replica n
|
|
|
|

Stefan Klauck 23

Elasticity in Hyrise-R

* Project

* Hyrise-R - Scale-Out and Hot-Standby version of Hyrise

* Hyrise-R implements Lazy Master Replication

» Tasks
» Implement Elasticity for Hyrise-R
* Demo scenario
« Smart query distribution
 Different indices
« Different latencies in federated cloud

* Technologies
* Hyrise
o C/C++
» Docker

Stefan Klauck

J\ Write workload
s

Read workload

Dispatcher
I r:
1 Write & read R R read requests R 1
v v AJ
1 requests 1
| |
I i I
HYRISE HYRISE HYRISE
| |
| primary node replica 1 replica n 1
I b I
I 1
S
I 1
. 7
24

Detection of compound events in
spatio-temporal football data

* Project:

* The usage of spatial-temporal data increased strongly in recent
years (e.g. performance analytics in sports)

 Provided data for football games of the German Bundesliga
* 1.5 million position information per game
* Manually tracked event list

e Problem: the event list is tracked manually, is not synchronized with
the position information, and contains errors

 Goal:

* Implementation and evaluation of algorithms to automatically detect
compound events in positional data of football games

* [everaging the parallel computation capabilities of coprocessors

Data Tiering / Aging

* Data Aging: within its life time, data usually loses
relevance and can e stored more price-efficient

* Data Tiering: storing (evicting) data on different
storage tiers based on their access frequency /
relevance

* Classical databases’ caching:
hot data is cache in DRAM

* Modern main memory databases (‘anti-caching”):
cold data is moved to secondary storage

Simplified Data Tiering
for HYRISE

* Project:
* Data Tiering can be transparently handled by APIs, which tier
data based on a given temperature

* The idea: while retaining the performance superiority of
IMDBSs, find columns that are never scanned and only
accessed for point-accesses

* These cold columns are moved out of DRAM

majority I
tuple accesses

1 11
accessed in accessed only for
query evaluation tuple reconstruction

Simplified Data Eviction
for HYRISE

* Tasks:
* Set data temperatures based on expected accesses
« Storage “drives”:
* emulated RAM-disk with adjustable characteristics
« top-notch PCl-e NAND Flash with 6+ GB/s
* Goal:
* Evaluate and implement data tiering for HYRISE

* Measure performance for inaustry-standard
benchmark TPC-C

How to Sort a Table

* Project:

* SAP HANA can partition tables
iNto a hot partition and a cold
partition (on SCM)

» Given an SQL workload, sort a I
table optimally to gather full-width Secondary
accesses in the hot partition storage

 Goal:

» Evaluation of a optimal sorting
approach on SAP HANA for a
real enterprise workload

Martin Boissier 29

An NVRAM-emulating Allocator

* Project:

* NVRAM is coming, but there is no hardware yet

* Emulation is complicated and requires specialized hardware

e Goal:

* Exploit NUMA latencies in order to allocate memory (e.q.,
using move_page) on a distant NUMA node,

which has similar
latency/bandwidth
characteristics

Socket

W ONOOUVHE WNREO

10
11
12
13
14
15

Martin Boissier

0
104,6
184,9
215,2
192,5
481,8
481,6

490
491,8
492,6
490,3
490,5
492,5
490,3
491,2
491,5
491,3

1
190,4
105,4
189,1
219,9
484,1

484
493
494,1
495,3
493
493,5
495,9
494
493,8
494,1
494

2

221
185,1
105,5
184,3
489,9
489,9
481,7
483,1
492,3
490,9
490,6
492,6
491,8
491,3
490,4
490,8

3
196,3
219,5
188,3
104,5
493,6
493,6
484,8

486
495,6
493,1
494,4

496
495,6
495,7
494,9
495,2

4
480,9
480,5
489,5

489
105,4
184,3
216,8
190,9
481,5

480
489,2
491,1

490
489,9
489,6

490

5

485
4838

494
492,5
188,8

105
188,8
2186

486
4835
492,8
494,9
494,2
494,1
494,2
494,4

6
488,8
488,1
4813
480,5
217,33
185,2

106
1835

491
489,4
480,9
482,2
489,4
490,4
491,1
490,2

7

494
492,9
487,6
485,2
193,8
220,3
187,8
105,9
495,5
493,6
485,2
488,3
494,6
494,6
495,3
495,5

8
490,9
489,8
490,9
489,5
481,5
481,4
490,3
491,1

106
184,8
217,1
191,8
483,1
482,9
491,5
491,3

9
493,1
491,9
493,3
491,8
482,5
482,5
492,1

493
188,1
106,5

189
219,1
484,5
484,6
493,5
493,2

10
490,2
489,6
490,2
488,8
489,4
489,2
480,1
481,6
217,9
185,6
104,9
184,4

490
489,8
481,9
481,8

11
495,5
494,4
495,6
494,6
494,1

495
485,8
487,5
193,7
219,4
187,4
105,6
496,2
495,9
487,5
487,5

12
490
489
491

489,8
489,6
489,5
489,1
489,8
482,6
481,7
489,5
491,6
105,2
184,8
216,2
189,8

13
493,4
492,3
494,7

493

494
4936
493,7
494,7
488,4
4853
494,3
496,5
187,8
105,3
188,5
2186

14
490,6
489,5
491,4
490,6
490,8
490,1
490,9
492,7
493,2
491,1
482,4
482,8
217,7
185,7
105,8

185

15
493
492

493,3
491,8
492,4
492,6
493,1
494,5
494,9
492,7
483,9
486,2
193,4
219,1
187,1
105,8

Relaxed Cache Coherence

e Cache Coherence on the SGI UV300

* Processors need to keep CPU caches
coherent with the memory

* \When two processors access the same
address, they need 10 see the same &, e
value

* Ensuring cache coherence Is expensive,
more expensive across NUMA nodes,
and even more so across blades R — l'

« Can we improve performance by

selectively working around coherence Il

orotocols?

Markus Dreseler

Relaxed Cache Coherence

* Setup
* We have an SGI machine with 480 logical cores and 12 TB DRAM
* SGlis very interested and will provide support for the project

* Tasks
« Step 1. In micro benchmarks, identify the cost of coherence

« Step 2. measure performance costs in HYRISE and identify
potential points for snapshot coherence

« Step 8: implement optimizations and benchmark

* Prerequisites
* this project requires solid C++ knowledge

TPC-DS on HYRISE

* Project

* TPC-DS is a well-known benchmark in the area of decision
support

* Read-only: only selects are performed, no updates
* Queries are long-running and complex

 Tasks

» Step 1: for a selected number of queries, write JSON gueries
for HYRISE

« Step 2: implement needed operators, such as IN
* Step 3: optimize performance of guery plans

In-Memory Database
Coprocessing

« Status Quo:
* Application logic moves closer to the database layer

* Compute intensive, long running application transactions
consume computational power of the datalbase system

e Classical database tasks have less available resources

e Solution:;

* Coprocessors like Nvidia's Tesla or Intel's Xeon Phi can
De used to increase the amount of computational power
for specific application logic within the database system

n-Memory Database Coprocessing
Application Example

* Application example:
Product Cost Calculation

* Logic can be expressed as
system of linear equations

* Matrix inversion and matrix
Vector operations can e
used to solve the problem
efficient on coprocessors

pc —Product cost per unit

pp —Purchase price for material
mc —Manufacturing costs for material

bi; —Bill of material: Number of units of product i required to produce one unit of product j
a;j — Activity required to produce one unit of |

r; — Cost center rate of cost center i

l; — Capacity load of cost center j

p; — Primary demand of product i

s; — Secondary demand of product j

Raw Materials: (Semi) Finished Goods: Manufacturing Costs:
S =20 pc; =me; + Z bljpci mej = Z a;;Ti + Z bijmc;
i i i
Secondary Demand: Capacity load:
55= 3 big(pi + 50) L= S ai(pi + 50)
mep, =Y pp(p+s)+ Y pf; (14)
s=B(p+s) t-p=Bt pp=mc—B'mc—A"r E 2 E
[=A(p+s) I=dt pr=Lr with L, = (5,,(2c,A +)-c,
(p\ (1-B 0\t) o me,=(1+z)($bme,- pp,) (1)
5= 30 (py+5)+£;) (1)
(e, - S (thytfme, «tpp,+ pfi (13)
N4 me, - $b,me;« pp, (6) 200, S

Smelp +s)= Thme b+3)+ B e +5) () mey =(1+2)(3 b;me;,+ pp;) ey =pysp, - by, o, - pysy) i - py e
Simes, = Y bmep,+s) ®)

Emw :Epp(/u‘v) (10)

In-Memory Database Coprocessing
Topic: Database Throughput

* Hypothesis:

* Coprocessors increase the throughput
within an application logic enriched
datalbase system

e Goal:

* |mprove an existing benchmark to prove
the hypothesis

In-Memory Database Coprocessing
Topic: Application Performance (1/2)

Product Cost Simulation Performance Analysis

,,,,,,,,,,,,]
Depth: 10 A
Cutoff: None j
Operation:
database
Search: database
Number of Execul SUM(time) in seconds v AVG(time) in seconds call
76 0387 /bill_of_material/json_materialization

/daabase

/bill_of_material/json_materialization
tabase/select

/bill_of_material/json_materialization

37

In-Memory Database Coprocessing
Topic: Application Performance (2/2)

* Hypothesis:

* Placing the database directly on the coprocessor
improves application performance significantly

e Goal:

* Replace database layer used by the current
prototype, leveraging a coprocessor datapnase

* Improve the overall performance characteristics
of the application

A Federated In-Memory
Database for Life Sciences

* Tasks
» Connect distributed databases to form a federated

* Goal

INn-memory database system
Benchmark
« Sensitive data must reside locally

« Minimal data exchange between nodes

* Fast and complete query propagation

Provide an uniform interface to enable
distributed analysis of heterogeneous
medical data

» Technologies

HANA
C++

Attributes:
,C1

Drug Development
Consortium

Attributes: - P~
R2, H1, C1) S
Attributes:
,
== oo @ -
LAy V' v.' a)
R Yo’ - "
Attributes: Attributes:
R1, R2 H1

39

Workload Analyses &
Benchmarking

Synthetic Benchmarks: How
synthetic are they really?

* Project:

* Plattner et al. found that benchmarks do
not retlect the properties of real-world
systems

* Many research paper make assumptions
that do not reflect real systems in any way

* How do both synthetic benchmarks
compare to real enterprise systems?

[2] Plattner, The Impact of Columnar In-Memory Databases on Enterprise Systems, VLDB 2014

Synthetic Benchmarks: How
synthetic are they really?

* Tasks:
* [race and analyze synthetic benchmarks
* Determine and evaluate relevant characteristics for
database performance (index usage, expensive
stateements, ...)
* Analyze each workload thoroughly and compare with
traces of a real ERP system
* Goal:

* [horough comparison of a productive enterprise
system with synthetical enterprise benchmarks

Suitability of an EAV model in

IMDBs

Enterprise systems are diverse

Non-functional system characteristics, e.g.,

Key: User1

\

Value: Mike

Key: User2

\

Value: John

Key: User3

\

Value: Mary

flexibility, performance, impact the data model design

Example: medical information systems often use an entity-

attribute-value (EAV) model

» How does that work with an columnar IMDB?
» VWould it make sense 1o use that in other domains as well?

» ...

Suitability of an EAV model in
IMDBs

* Tasks

* Implementation of key-value (KV)/EAV data model for KV Store and IMDB
* Benchmark

» Performance for different query classes

* Memory consumption

« Goal

» Comparison of differences WRT performance and memory usage
* |dentification of query classes that perform comparatively poor on KV stores

* Technologies
« HANA

» Cassandra (Scylla)

Thank you.

