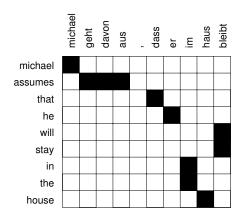
Word Alignment

IT Systems Engineering | Universität Potsdam

Dr. Mariana Neves (adapted from the original slides of Prof. Philipp Koehn)

November 23rd, 2015

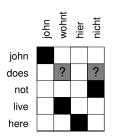
Overview



- Further discussion on word alignment, such as problems and quality measurement
- Present a method on word alignment based on the IBM models

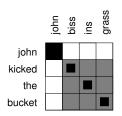
Word Alignment

Given a sentence pair, which words correspond to each other?


Word alignment

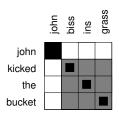
- It does not need to be one-by-one.
- Words can have multiple or no alignment points.

Word Alignment?



Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?



How do the idioms kicked the bucket and biss ins grass match up?

Outside this exceptional context, bucket is never a good translation for grass

Word Alignment?

The better solution here is a phrasal alignment!

Word alignment

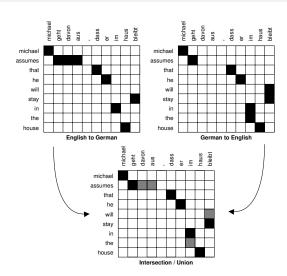
- Sure alignments:
 - John to John
- Possible alignments:
 - kicked to biss
 - the to im
 - bucket to Grass

Measuring Word Alignment Quality

- Manually align corpus with sure (S) and possible (P) alignment points ($S \subseteq P$)
- Alignment Error Rate (AER): common metric for evaluation word alignments

$$AER(S, P; A) = 1 - \frac{|A \cap S| + |A \cap P|}{|A| + |S|}$$

 AER = 0: alignment A matches all sure, any possible alignment points


Word Alignment with IBM Models

- IBM Models create a many-to-one mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
- Real word alignments have many-to-many mappings

Symmetrizing Word Alignments

• Intersection of GIZA++ bidirectional alignments

Symmetrizing Word Alignments

- The **intersection** usually contains good alignment points (high precision), but not all of them.
- The union usually contains most of the desired align points (high recall), but also faulty points.

- We want to explore the space between the two extremes:
 - Take the all alignment points in the intersection (reliable).
 - Add some of the points from the union (neighboring candidates), incrementally.

Growing heuristic


```
grow-diag-final(e2f,f2e)
 1: neighboring = \{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\}
 2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);
grow-diag()
 1: while new points added do
         for all English word e \in [1...e_n], foreign word f \in [1...f_n], (e, f) \in A do
 2:
 3:
             for all neighboring alignment points (e_{new}, f_{new}) do
 4:
                if (e_{\text{new}} \text{ unaligned OR } f_{\text{new}} \text{ unaligned}) \text{ AND } (e_{\text{new}}, f_{\text{new}}) \in \text{union(e2f,f2e)} then
 5:
                    add (e_{new}, f_{new}) to A
                end if
 6:
 7:
            end for
 8:
         end for
 9: end while
final()
 1: for all English word e_{\text{new}} \in [1...e_n], foreign word f_{\text{new}} \in [1...f_n] do
 2:
         if (e_{\text{new}} \text{ unaligned OR } f_{\text{new}} \text{ unaligned}) \text{ AND } (e_{\text{new}}, f_{\text{new}}) \in \text{union(e2f,f2e)} then
 3:
             add (e_{new}, f_{new}) to A
         end if
 4:
 5: end for
```

Suggested reading

• Statistical Machine Translation, Philipp Koehn (section 4.5).