Machine Translation WiSe 2015/2016

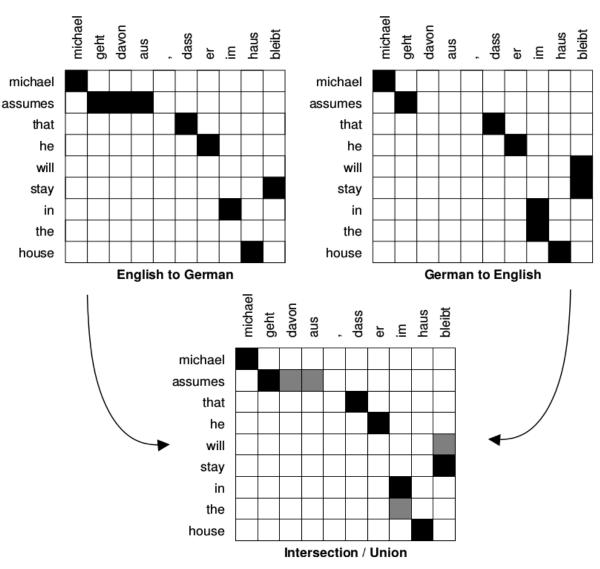
HPI Hasso Plattner Institut

IT Systems Engineering | Universität Potsdam

Exercises

- 1. Word alignment
- 2. Language models

Optionally, also the improvement of the IBM model(s)



Submission

- Deadline
 - Sunday, Jan 31st 2016, 23:59
- Hand-in
 - SQL file with queries
 - Stored procedures in the team's schema
 - Python/Java code
- Presentation
 - Monday, Feb 1st 2016

Word alignment

grow-diag-final(e2f,f2e)

- 1: neighboring = {(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)}
- 2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);

grow-diag()

- 1: while new points added do
- for all English word $e \in [1...e_n]$, foreign word $f \in [1...f_n]$, $(e, f) \in A$ do 2:
- for all neighboring alignment points (e_{new}, f_{new}) do 3:
- if (e_{new} unaligned OR f_{new} unaligned) AND (e_{new} , f_{new}) \in union(e2f,f2e) then 4: 5:
 - add (e_{new}, f_{new}) to A
- end if 6:
- 7: end for
- end for 8:
- 9: end while

final()

- 1: for all English word $e_{new} \in [1...e_n]$, foreign word $f_{new} \in [1...f_n]$ do
- if (e_{new} unaligned OR f_{new} unaligned) AND (e_{new} , f_{new}) \in union(e2f,f2e) then 2:
- 3: add (e_{new}, f_{new}) to A
- end if 4:
- 5: end for

Word alignment

- Based on your implementation of the IBM model 1 or 2
- Training of the models on any possible number of sentences
- Evaluation:
 - Manual validation on a sample of 10 sentences from the corpus (not included in the training data)

Language model

- Implementation of a bigram language model
 - Including add-one smoothing
- For both languages: English and German
- Integration into the IBM model(s)

$$\begin{aligned} \operatorname{argmax}_{\mathbf{e}} \ p(\mathbf{e}|\mathbf{f}) &= \operatorname{argmax}_{\mathbf{e}} \frac{p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e})}{p(\mathbf{f})} \\ &= \operatorname{argmax}_{\mathbf{e}} \ p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e}) \end{aligned}$$