
Language Models

Dr. Mariana Neves
(adapted from the original slides

of Prof. Philipp Koehn)

January 4th, 2016

Mariana Neves Language Models January 4th, 2016 1 / 45

Language models

Language models answer the question:

How likely is a string of English words good English?

Mariana Neves Language Models January 4th, 2016 2 / 45

Language models

Help with reordering

plm(the house is small) > plm(small the is house)

Help with word choice

plm(I am going home) > plm(I am going house)

Mariana Neves Language Models January 4th, 2016 3 / 45

N-Gram Language Models

Given: a string of English words W = w1,w2,w3, ...,wn

Question: what is p(W)?

We collect large amount of text and count how often W occurs to
estimate p(W)

Mariana Neves Language Models January 4th, 2016 4 / 45

Sparse data

Sparse data: Many good English sentences will not have been seen
before

Decomposing p(W) using the chain rule:

p(w1,w2,w3, ...,wn) = p(w1) p(w2|w1) p(w3|w1,w2)...p(wn|w1, ...wn−1)

(not much gained yet, p(wn|w1,w2, ...wn−1) is equally sparse)

Mariana Neves Language Models January 4th, 2016 5 / 45

Markov Chain

Markov assumption:

only previous history matters
limited memory: only last k words are included in history
(older words less relevant)

→ kth order Markov model

Mariana Neves Language Models January 4th, 2016 6 / 45

Markov Chain

For instance 2-gram language model:

p(w1,w2,w3, ...,wn) ' p(w1) p(w2|w1) p(w3|w2)...p(wn|wn−1)

What is conditioned on, here wi−1 is called the history

Mariana Neves Language Models January 4th, 2016 7 / 45

Model order

More training data allows for longer histories (higher kth).

Most commonly, trigram (3-grams) models are used.

But bigrams (2-grams), unigrams (single words) or any other order of
n-grams is possible.

Mariana Neves Language Models January 4th, 2016 8 / 45

Estimating N-Gram Probabilities

Maximum likelihood estimation

p(w2|w1) =
count(w1,w2)

count(w1)

Collect counts over a large text corpus

Millions to billions of words are easy to get
(trillions of English words available on the web)

Mariana Neves Language Models January 4th, 2016 9 / 45

Example: 3-Gram

Counts for trigrams and estimated word probabilities

the green (total: 1748)

word c. prob.

paper 801 0.458

group 640 0.367

light 110 0.063

party 27 0.015

ecu 21 0.012

the red (total: 225)

word c. prob.

cross 123 0.547

tape 31 0.138

army 9 0.040

card 7 0.031

, 5 0.022

the blue (total: 54)

word c. prob.

box 16 0.296

. 6 0.111

flag 6 0.111

, 3 0.056

angel 3 0.056

225 trigrams in the Europarl corpus start with the red
123 of them end with cross

→ maximum likelihood probability is 123
225 = 0.547.

Mariana Neves Language Models January 4th, 2016 10 / 45

How good is the LM?

A good model assigns a text of real English W a high probability

This can be also measured with cross entropy:

H(W) =− 1

n
log p(W n

1)

− 1

n

n∑
i=1

log p(wi |w1,w2, ...wi−1)

Or, perplexity
perplexity(W) = 2H(W)

Mariana Neves Language Models January 4th, 2016 11 / 45

Example: trigrams

I would like to commend the rapporteur on his work.

prediction plm -log2 plm

plm(i|</s><s>) 0.109 3.197

plm(would|<s>i) 0.144 2.791

plm(like|i would) 0.489 1.031

plm(to|would like) 0.905 0.144

plm(commend|like to) 0.002 8.794

plm(the|to commend) 0.472 1.084

plm(rapporteur|commend the) 0.147 2.763

plm(on|the rapporteur) 0.056 4.150

plm(his|rapporteur on) 0.194 2.367

plm(work|on his) 0.089 3.498

plm(.|his work) 0.290 1.785

plm(</s>|work .) 0.99999 0.000014

average 2.634

Mariana Neves Language Models January 4th, 2016 12 / 45

Comparison 1–4-Gram

word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197

would 8.342 2.884 2.791 2.791

like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633

the 3.885 1.402 1.084 0.880

rapporteur 10.840 7.319 2.763 2.350

on 6.765 4.140 4.150 1.862

his 10.678 7.316 2.367 1.978

work 9.993 4.816 3.498 2.394

. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average 8.051 4.072 2.634 2.251

perplexity 265.136 16.817 6.206 4.758

Mariana Neves Language Models January 4th, 2016 13 / 45

Unseen N-Grams

We have seen i like to in our corpus

We have never seen i like to smooth in our corpus

→ p(smooth|i like to) = 0

Any sentence that includes i like to smooth will be assigned
probability 0

Mariana Neves Language Models January 4th, 2016 14 / 45

Add-One Smoothing

For all possible n-grams, add the count of one.

p =
c + 1

n + v

c = count of n-gram in corpus
n = count of history
v = vocabulary size (total number of possible n-grams)

Mariana Neves Language Models January 4th, 2016 15 / 45

Add-One Smoothing

But there are many more unseen n-grams than seen n-grams

Example: Europarl 2-bigrams:

86, 700 distinct words
86, 7002 = 7, 516, 890, 000 possible bigrams
but only about 30, 000, 000 words (and bigrams) in corpus

Mariana Neves Language Models January 4th, 2016 16 / 45

Add-α Smoothing

Add α < 1 to each count

p =
c + α

n + αv

What is a good value for α?

Could be optimized on held-out set

Mariana Neves Language Models January 4th, 2016 17 / 45

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c + 1) n

n+v2 (c + α) n
n+αv2 tc

0 0.00378 0.00016 0.00016

1 0.00755 0.95725 0.46235

2 0.01133 1.91433 1.39946

3 0.01511 2.87141 2.34307

4 0.01888 3.82850 3.35202

5 0.02266 4.78558 4.35234

6 0.02644 5.74266 5.33762

8 0.03399 7.65683 7.15074

10 0.04155 9.57100 9.11927

20 0.07931 19.14183 18.95948

Add-α smoothing with α = 0.00017

tc are average counts of n-grams in test set that occurred c times in
corpus

Mariana Neves Language Models January 4th, 2016 18 / 45

Deleted Estimation

Estimate true counts in held-out data

split corpus in two halves: training and held-out
counts in training Ct(w1, ...,wn)
number of n-grams with training count r : Nr

total times n-grams of training count r seen in held-out data: Tr

Mariana Neves Language Models January 4th, 2016 19 / 45

Example: Deleted estimation (bigrams)

Count Count of counts Counts in held-out Exp. count
r Nr Tr E (r) = Tr/Nr

0 7,515,623,434 938,504 0.00012

1 753,777 353,383 0.46900

2 170,913 239,736 1.40322

3 78,614 189,686 2.41381

4 46,769 157,485 3.36860

5 31,413 134,653 4.28820

6 22,520 122,079 5.42301

8 13,586 99,668 7.33892

10 9,106 85,666 9.41129

20 2,797 53,262 19.04992

Mariana Neves Language Models January 4th, 2016 20 / 45

Deleted Estimation

We can adjust the real counts to these expected counts

better estimates for both seen and unseen events

Both halves can be switched and results combined

rdel =
T 1
r + T 2

r

N1
r + N2

r

where r = count(w1, ...,wn)

Mariana Neves Language Models January 4th, 2016 21 / 45

Good-Turing Smoothing

Adjust actual counts r to expected counts r∗ with formula

r∗ = (r + 1)
Nr+1

Nr

Nr number of n-grams that occur exactly r times in corpus

Mariana Neves Language Models January 4th, 2016 22 / 45

Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count
r Nr r∗ t

0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

adjusted count fairly accurate when compared against the test count

Mariana Neves Language Models January 4th, 2016 23 / 45

Back-Off

In given corpus, we may never observe

Scottish beer drinkers
Scottish beer eaters

Both have count 0

→ our smoothing methods will assign them the same probability

Mariana Neves Language Models January 4th, 2016 24 / 45

Back-Off

Better: backoff to bigrams:

beer drinkers
beer eaters

Mariana Neves Language Models January 4th, 2016 25 / 45

Interpolation

Higher and lower order n-gram models have different strengths and
weaknesses

high-order n-grams are sensitive to more context, but have sparse
counts
low-order n-grams consider only very limited context, but have robust
counts

Mariana Neves Language Models January 4th, 2016 26 / 45

Interpolation

Combine them

pI (w3|w1,w2) = λ1 p1(w3)

+ λ2 p2(w3|w2)

+ λ3 p3(w3|w1,w2)

∀λn : 0 ≤ λn ≤ 1∑
n λn = 1

Mariana Neves Language Models January 4th, 2016 27 / 45

Recursive Interpolation

We can trust some histories wi−n+1, ...,wi−1 more than others

Condition interpolation weights on history: λwi−n+1,...,wi−1

Recursive definition of interpolation

pI
n(wi |wi−n+1, ...,wi−1) = λwi−n+1,...,wi−1 pn(wi |wi−n+1, ...,wi−1) +

+ (1− λwi−n+1,...,wi−1) pI
n−1(wi |wi−n+2, ...,wi−1)

Mariana Neves Language Models January 4th, 2016 28 / 45

Back-Off

Trust the highest order language model that contains n-gram

pBOn (wi |wi−n+1, ...,wi−1) =

=

dn(wi−n+1, ...,wi−1) pn(wi |wi−n+1, ...,wi−1)

if countn(wi−n+1, ...,wi) > 0

αn(wi−n+1, ...,wi−1) pBOn−1(wi |wi−n+2, ...,wi−1)

otherwise

Requires

adjusted prediction model αn(wi |wi−n+1, ...,wi−1)
discounting function dn(w1, ...,wn−1)

Mariana Neves Language Models January 4th, 2016 29 / 45

Diversity of Predicted Words

Consider the bigram histories spite and constant

both occur 993 times in Europarl corpus

only 9 different words follow spite

almost always followed by of (979 times), due to expression in spite of

415 different words follow constant

most frequent: and (42 times), concern (27 times), pressure (26
times),
but huge tail of singletons: 268 different words

More likely to see new bigram that starts with constant than spite

Witten-Bell smoothing considers diversity of predicted words

Mariana Neves Language Models January 4th, 2016 30 / 45

Witten-Bell Smoothing

Recursive interpolation method

Number of possible extensions of a history w1, ...,wn−1 in training
data

N1+(w1, ...,wn−1, •) = |{wn : c(w1, ...,wn−1,wn) > 0}|

Lambda parameters

1− λw1,...,wn−1 =
N1+(w1, ...,wn−1, •)

N1+(w1, ...,wn−1, •) +
∑

wn
c(w1, ...,wn−1,wn)

Mariana Neves Language Models January 4th, 2016 31 / 45

Witten-Bell Smoothing: Examples

Let us apply this to our two examples:

1− λspite =
N1+(spite, •)

N1+(spite, •) +
∑

wn
c(spite,wn)

=
9

9 + 993
= 0.00898

1− λconstant =
N1+(constant, •)

N1+(constant, •) +
∑

wn
c(constant,wn)

=
415

415 + 993
= 0.29474

Mariana Neves Language Models January 4th, 2016 32 / 45

Diversity of Histories

Consider the word York

fairly frequent word in Europarl corpus, occurs 477 times
as frequent as foods, indicates and providers

→ in unigram language model: a respectable probability

However, it almost always directly follows New (473 times)

Recall: unigram model only used, if the bigram model inconclusive

York unlikely second word in unseen bigram
in back-off unigram model, York should have low probability

Mariana Neves Language Models January 4th, 2016 33 / 45

Kneser-Ney Smoothing

Kneser-Ney smoothing takes diversity of histories into account

Count of histories for a word

N1+(•w) = | {wi : c(wi ,w) > 0} |

Recall: maximum likelihood estimation of unigram language model

pML(w) =
c(w)∑
i c(wi)

In Kneser-Ney smoothing, replace raw counts with count of histories

pKN(w) =
N1+(•w)∑
wi
N1+(•wi)

Mariana Neves Language Models January 4th, 2016 34 / 45

Evaluation

Evaluation of smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method bigram trigram 4-gram
Good-Turing 96.2 62.9 59.9

Witten-Bell 97.1 63.8 60.4

Modified Kneser-Ney 95.4 61.6 58.6

Mariana Neves Language Models January 4th, 2016 35 / 45

Managing the Size of the Model

Millions to billions of words are easy to get

(trillions of English words available on the web)

But: huge language models do not fit into RAM

Mariana Neves Language Models January 4th, 2016 36 / 45

Number of Unique N-Grams

Number of unique n-grams in Europarl corpus

29,501,088 tokens (words and punctuation)

Order Unique n-grams Singletons
unigram 86,700 33,447 (38.6%)

bigram 1,948,935 1,132,844 (58.1%)

trigram 8,092,798 6,022,286 (74.4%)

4-gram 15,303,847 13,081,621 (85.5%)

5-gram 19,882,175 18,324,577 (92.2%)

→ remove singletons of higher order n-grams

Mariana Neves Language Models January 4th, 2016 37 / 45

Estimation on Disk

Language models too large to build

What needs to be stored in RAM?

maximum likelihood estimation

p(wn|w1, ...,wn−1) =
count(w1, ...,wn)

count(w1, ...,wn−1)

can be done separately for each history w1, ...,wn−1

Mariana Neves Language Models January 4th, 2016 38 / 45

Estimation on Disk

Keep data on disk

extract all n-grams into files on-disk
sort by history on disk
only keep n-grams with shared history in RAM

Smoothing techniques may require additional statistics

Mariana Neves Language Models January 4th, 2016 39 / 45

Efficient Data Structures

Need to store probabilities for

the very large majority
the very large number

Both share history the very large

→ no need to store history twice

→ Trie

Mariana Neves Language Models January 4th, 2016 40 / 45

Efficient Data Structures

verythe large
boff:-0.385

majority p:-1.147
number p:-0.275

important
boff:-0.231

and p:-1.430
areas p:-1.728

challenge p:-2.171
debate p:-1.837

discussion p:-2.145
fact p:-2.128

international p:-1.866
issue p:-1.157

...

best
boff:-0.302

serious
boff:-0.146

very

very large
boff:-0.106

amount p:-2.510
amounts p:-1.633

and p:-1.449
area p:-2.658

companies p:-1.536
cuts p:-2.225

degree p:-2.933
extent p:-2.208

financial p:-2.383
foreign p:-3.428

...

important
boff:-0.250

best
boff:-0.082

serious
boff:-0.176

4-gram

3-gram backoff

large
boff:-0.470

accept p:-3.791
acceptable p:-3.778
accession p:-3.762
accidents p:-3.806

accountancy p:-3.416
accumulated p:-3.885
accumulation p:-3.895

action p:-3.510
additional p:-3.334

administration p:-3.729
...

2-gram backoff
aa-afns p:-6.154
aachen p:-5.734
aaiun p:-6.154

aalborg p:-6.154
aarhus p:-5.734
aaron p:-6.154

aartsen p:-6.154
ab p:-5.734

abacha p:-5.156
aback p:-5.876

...

1-gram backoff

Mariana Neves Language Models January 4th, 2016 41 / 45

Reducing Vocabulary Size

For instance: each number is treated as a separate token

Replace them with a number token num

but: we want our language model to prefer

plm(I pay 950.00 in May 2007) > plm(I pay 2007 in May 950.00)

not possible with number token

plm(I pay num in May num) = plm(I pay num in May num)

Replace each digit (with unique symbol, e.g., @ or 5), retain some
distinctions

plm(I pay 555.55 in May 5555) > plm(I pay 5555 in May 555.55)

Mariana Neves Language Models January 4th, 2016 42 / 45

Filtering Irrelevant N-Grams

We use language model in decoding

we only produce English words in translation options
filter language model down to n-grams containing only those words

Ratio of 5-grams needed to all 5-grams (by sentence length):

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120

ra
tio

 o
f 5

-g
ra

m
s

re
qu

ire
d

(b
ag

-o
f-

w
or

ds
)

sentence length

Mariana Neves Language Models January 4th, 2016 43 / 45

Summary

Language models: How likely is a string of English words good
English?

N-gram models (Markov assumption)

Perplexity

Count smoothing

add-one, add-α
deleted estimation
Good Turing

Interpolation and backoff

Good Turing
Witten-Bell
Kneser-Ney

Managing the size of the model

Mariana Neves Language Models January 4th, 2016 44 / 45

Suggested reading

Statistical Machine Translation, Philipp Koehn (chapter 7).

Mariana Neves Language Models January 4th, 2016 45 / 45

