### **Tree-based Models**



IT Systems Engineering | Universität Potsdam

Dr. Mariana Neves (adapted from the original slides of Prof. Philipp Koehn)

January 18th, 2016

### Tree-Based Models

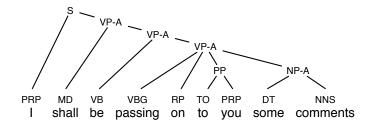
• Traditional statistical models operate on sequences of words

- Many translation problems can be best explained by pointing to syntax
  - reordering, e.g., verb movement in German-English translation
  - long distance agreement (e.g., subject-verb) in output

 $\Rightarrow$  Translation models based on tree representation of language

- significant ongoing research
- state-of-the art for some language pairs

(日) (四) (日) (日) (日)


#### Phrase structure

- noun phrases: the big man, a house, ...
- prepositional phrases: at 5 o'clock, in Edinburgh, ...
- verb phrases: going out of business, eat chicken, ...
- adjective phrases, ...

- Context-free Grammars (CFG)
  - non-terminal symbols (NT): phrase structure labels, part-of-speech tags
  - terminal symbols (T): words
  - production rules: NT  $\rightarrow$  [NT,T]+ example: NP  $\rightarrow$  DET NN

- 4 同 6 4 日 6 4 日 6

## Phrase Structure Grammar



Phrase structure grammar tree for an English sentence (as produced by Collins' parser) Synchronous Phrase Structure Grammar

• English/German rule

 $\rm NP$   $\rightarrow$  Det JJ nn

• French/Portuguese/Spanish rule

 $\rm NP 
ightarrow \rm Det \ NN \ JJ$ 

• Synchronous rule (indices indicate alignment):  $NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$ 

# Synchronous Grammar Rules

Nonterminal rules

 $NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$ 

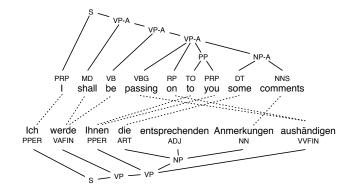
Terminal rules

 $N \rightarrow maison \mid house$ 

$$\begin{split} & NP \rightarrow la \mbox{ maison bleue } | \mbox{ the blue house} \\ \bullet \mbox{ Mixed rules (mixing terminal and non-terminal symbols)} \\ & NP \rightarrow la \mbox{ maison } JJ_1 | \mbox{ the } JJ_1 \mbox{ house} \end{split}$$

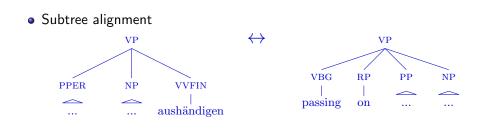
- 31

イロト 不得下 イヨト イヨト


### Tree-Based Translation Model

- Translation by parsing
  - synchronous grammar has to parse entire input sentence
  - output tree is generated at the same time
  - process is broken up into a number of rule applications
- Translation probability

$$SCORE(TREE, E, F) = \prod_{i} RULE_{i}$$


• Many ways to assign probabilities to rules

# Aligned Tree Pair



Phrase structure grammar trees with word alignment (German–English sentence pair.)

伺下 イヨト イヨト



| riana |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |

< ∃ → January 18th, 2016 10 / 47

3

< 🗇 🕨

• Synchronous grammar rule

 $VP \rightarrow PPER_1 NP_2$  aushändigen | passing on PP<sub>1</sub> NP<sub>2</sub>

- Note:
  - one word aushändigen mapped to two words passing on ok
  - but: fully non-terminal rule not possible (one-to-one mapping constraint for nonterminals)

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Another Rule



- Synchronous grammar rule (stripping out English internal structure)  $PRO/PP \rightarrow Ihnen \mid to you$
- Rule with internal structure  $PRO/PP \rightarrow Ihnen$ TO
  PRP | | |to
  you

- 3

イロト イポト イヨト イヨト

### Another Rule

 $\bullet\,$  Translation of German werde to English shall be



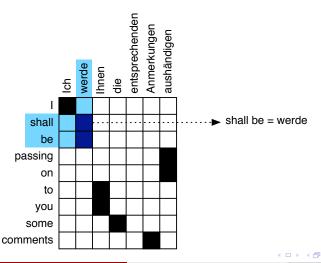
- $\bullet\,$  Translation rule needs to include mapping of VP
- $\Rightarrow$  Complex rule

$$\begin{array}{cccc} VP & \rightarrow & VAFIN & VP_1 & & MD & VP \\ & & & & & \\ werde & & shall & VB & VP_1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

13 / 47

- Stripping out internal structure  $VP \rightarrow werde VP_1 | shall be VP_1$  $\Rightarrow$  synchronous context free grammar
- Maintaining internal structure

 $\begin{array}{c|ccccc} VP & \rightarrow & VAFIN & VP_1 & & MD & VP \\ & & & & \\ werde & & shall & VB & VP_1 \\ \Rightarrow \ synchronous \ tree \ substitution \ grammar & & | \\ & & be \end{array}$ 

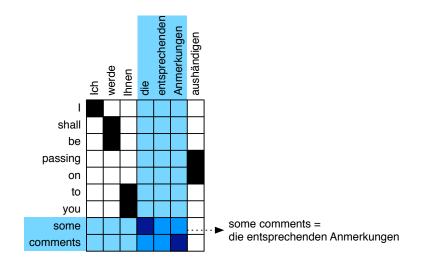

# Learning Synchronous Grammars

• Extracting rules from a word-aligned parallel corpus

- First: Hierarchical phrase-based model
  - only one non-terminal symbol **x**
  - no linguistic syntax, just a formally syntactic model

- Then: Synchronous phrase structure model
  - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
  - corpus must also be parsed with syntactic parser

# Extracting Phrase Translation Rules




Mariana Neves

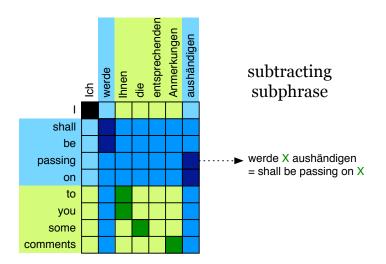
January 18th, 2016 16 / 47

3

# Extracting Phrase Translation Rules




January 18th, 2016 17 / 47


3

- 4 回 ト - 4 回 ト

# Extracting Phrase Translation Rules



### Extracting Hierarchical Phrase Translation Rules



• Recall: consistent phrase pairs

 $(\bar{e}, \bar{f})$  consistent with  $A \Leftrightarrow$   $\forall e_i \in \bar{e} : (e_i, f_j) \in A \rightarrow f_j \in \bar{f}$ AND  $\forall f_j \in \bar{f} : (e_i, f_j) \in A \rightarrow e_i \in \bar{e}$ AND  $\exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$ 

• Let *P* be the set of all extracted phrase pairs  $(\bar{e}, \bar{f})$ 

# Formal Definition

• Extend recursively:

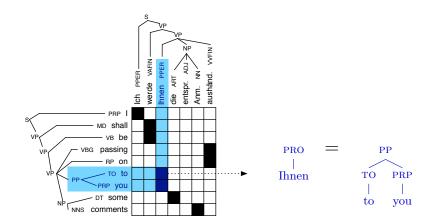
$$\begin{array}{l} \text{if } (\bar{e},\bar{f}) \in P \text{ and } (\bar{e}_{\text{SUB}},\bar{f}_{\text{SUB}}) \in P \\ \text{and } \bar{e} = \bar{e}_{\text{PRE}} + \bar{e}_{\text{SUB}} + \bar{e}_{\text{POST}} \\ \text{and } \bar{f} = \bar{f}_{\text{PRE}} + \bar{f}_{\text{SUB}} + \bar{f}_{\text{POST}} \\ \text{and } \bar{e} \neq \bar{e}_{\text{SUB}} \text{ and } \bar{f} \neq \bar{f}_{\text{SUB}} \\ \end{array} \\ \begin{array}{l} \text{add } (e_{\text{PRE}} + X + e_{\text{POST}}, f_{\text{PRE}} + X + f_{\text{POST}}) \text{ to } P \end{array} \end{array}$$

(note: any of  $e_{\text{PRE}}$ ,  $e_{\text{POST}}$ ,  $f_{\text{PRE}}$ , or  $f_{\text{POST}}$  may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

3

(日) (周) (三) (三)


 Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

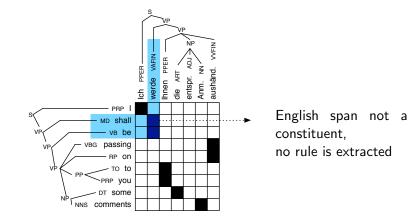
#### $\mathbf{Y} \to \mathbf{X}_1 \ \mathbf{X}_2 \ \mid \ \mathbf{X}_2 \ \textit{of} \ \mathbf{X}_1$

- Typical restrictions to limit complexity [Chiang, 2005]
  - at most 2 nonterminal symbols
  - at least 1 but at most 5 words per language
  - span at most 15 words (counting gaps)

(日) (周) (三) (三)

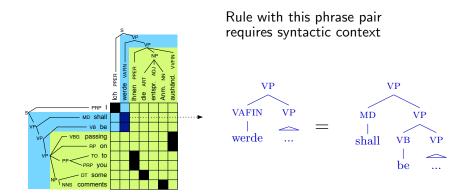
### Learning Syntactic Translation Rules




3

< 1<sup>™</sup> >

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
   ⇔ syntactic rules must cover constituents in the tree
- Hierarchical: gaps may cover any span
   ⇔ gaps must cover constituents in the tree


• Much less rules are extracted (all things being equal)

# Impossible Rules

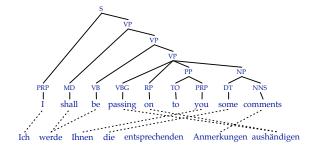


3

### Rules with Context

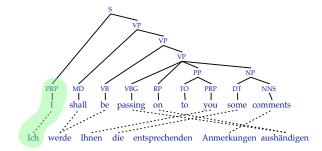


January 18th, 2016 26 / 47


< 一型

- Huge number of rules can be extracted (every alignable node may or may not be part of a rule → exponential number of rules)
- Need to limit which rules to extract

- Option 1: similar restriction as for hierarchical model (maximum span size, maximum number of terminals and non-terminals, etc.)
- Option 2: only extract minimal rules ("GHKM" rules)


イロト 不得下 イヨト イヨト

## Minimal Rules

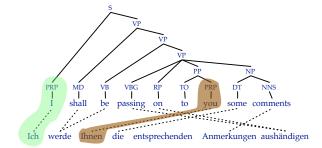


Extract: set of smallest rules required to explain the sentence pair

| riana |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |



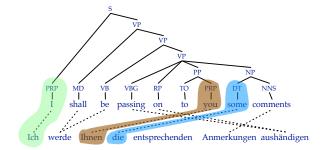
#### Extracted rule: $\ensuremath{\operatorname{PRP}}\xspace \to \ensuremath{\operatorname{Ich}}\xspace \mid I$


| iana |  |  |
|------|--|--|
|      |  |  |
|      |  |  |

Tree-based Models

January 18th, 2016 29 / 47

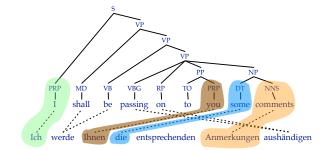
3


・ロン ・四 ・ ・ ヨン ・ ヨン



#### Extracted rule: $PRP \rightarrow Ihnen \mid you$

3

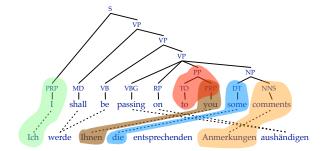

(日) (周) (三) (三)



#### Extracted rule: $DT \rightarrow die \mid some$

3

(日) (同) (三) (三)

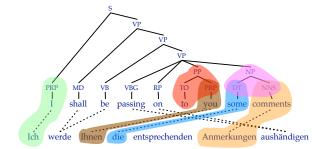



#### Extracted rule: NNS $\rightarrow$ Anmerkungen | comments

3

(日) (同) (三) (三)

### Insertion Rule



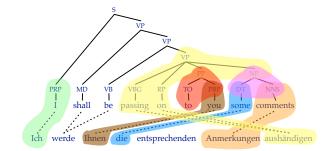

#### Extracted rule: $PP \rightarrow X \mid to PRP$

3

イロト イヨト イヨト イヨト

### Non-Lexical Rule



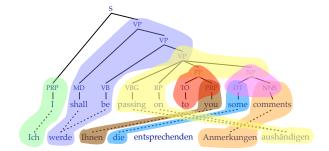

#### Extracted rule: NP $\rightarrow$ X<sub>1</sub> X<sub>2</sub> | DT<sub>1</sub> NNS<sub>2</sub>

| iana |  |  |
|------|--|--|
|      |  |  |
|      |  |  |

3

(日) (同) (三) (三)

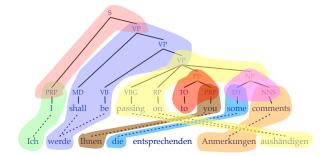
# Lexical Rule with Syntactic Context




Extracted rule:  $VP \rightarrow X_1 X_2$  aushändigen | passing on PP<sub>1</sub> NP<sub>2</sub>

| Mariana Neves |  |
|---------------|--|
|               |  |
|               |  |

January 18th, 2016 35 / 47

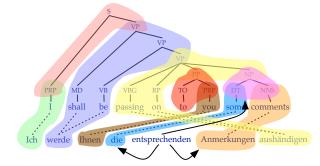

# Lexical Rule with Syntactic Context



Extracted rule:  $VP \rightarrow werde x \mid shall be VP$  (ignoring internal structure)

| riana |  |  |
|-------|--|--|
|       |  |  |

### Non-Lexical Rule




#### Extracted rule: $S \rightarrow X_1 X_2 \mid PRP_1 VP_2$ DONE — note: one rule per alignable constituent

.∃ >

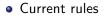
< 🗇 🕨 🔸

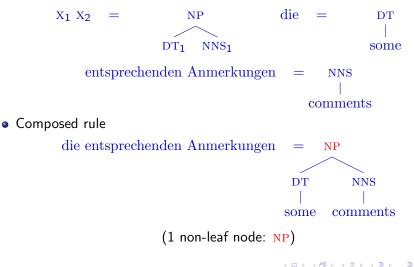
### Unaligned Source Words



Attach to neighboring words or higher nodes  $\rightarrow$  additional rules

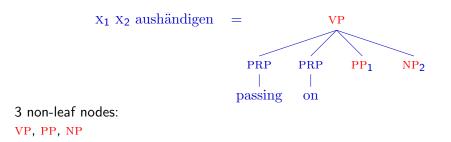
| iana |  |  |
|------|--|--|
|      |  |  |
|      |  |  |


# Too Few Phrasal Rules?


• Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)

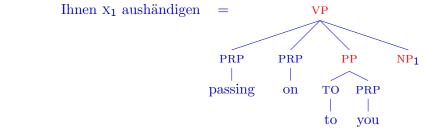
• But: phrasal rules very beneficial in phrase-based models

- Solutions
  - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
  - compose minimal rules to cover a maximum number of non-leaf nodes


# **Composed Rules**






| Mariana Neve |  |  |  |  |
|--------------|--|--|--|--|
|              |  |  |  |  |
|              |  |  |  |  |

January 18th, 2016



3

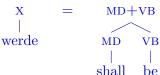
(日) (同) (日) (日) (日)



3 non-leaf nodes: VP, PP and NP

- < ∃ → January 18th, 2016 42 / 47

3


< A

# Relaxing Tree Constraints

• Impossible rule X = MD VB| | | werde shall be

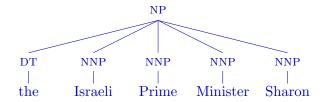
• Create new non-terminal label: MD+VB

 $\Rightarrow$  New rule



|  | Neves |
|--|-------|
|  |       |

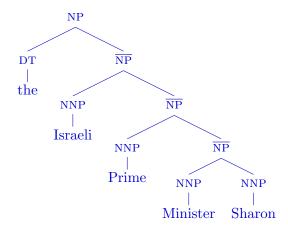
- ∢ ≣ →


3

43 / 47

< □ > < ---->

# Special Problem: Flat Structures


• Flat structures severely limit rule extraction



• Can only extract rules for individual words or entire phrase

| - IV | lar | iana | - IN | ev/ | PS. |
|------|-----|------|------|-----|-----|
|      |     |      |      |     |     |

# Relaxation by Tree Binarization



More rules can be extracted

Left-binarization or right-binarization?

Mariana Neves

Tree-based Models

-January 18th, 2016 45 / 47

3

< A</li>

- Extract all rules from corpus
- Score based on counts
  - joint rule probability:  $p(LHS, RHS_f, RHS_e)$
  - rule application probability:  $p(\text{RHS}_f, \text{RHS}_e | \text{LHS})$
  - direct translation probability:  $p(\text{RHS}_e|\text{RHS}_f, \text{LHS})$
  - noisy channel translation probability:  $p(\text{RHS}_f|\text{RHS}_e, \text{LHS})$
  - lexical translation probability:  $\prod_{e_i \in \text{RHS}_e} p(e_i | \text{RHS}_f, a)$

#### • Statistical Machine Translation, Philipp Koehn (chapter 11).

- 3

(日) (同) (日) (日) (日)