Tree-based Models

IT Systems Engineering | Universität Potsdam

Dr. Mariana Neves (adapted from the original slides of Prof. Philipp Koehn)

January 25th, 2016

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence, a chart with translations for the $O(n^2)$ spans has to be filled

Mariana Neves

3

- 4 回 ト 4 三 ト 4 三

A (10) A (10) A (10)

(人間) トイヨト イヨト

6 / 75

3

Complex rule: matching underlying constituent spans, and covering words

< (T) > <

Complex rule with reordering

э

- 4 週 1 - 4 三 1 - 4 三 1

- 34

<ロ> (日) (日) (日) (日) (日)

- For each span, a stack of (partial) translations are maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Naive Algorithm

Input: Foreign sentence $\mathbf{f} = f_1, \dots f_{l_f}$, with syntax tree **Output:** English translation \mathbf{e}

- 1: for all spans [start,end] (bottom up) do
- 2: for all sequences s of hypotheses and words in span [start,end] do
- 3: for all rules r do
- 4: **if** rule *r* applies to chart sequence *s* **then**
- 5: create new hypothesis *c*
- 6: add hypothesis *c* to chart
- 7: end if
- 8: end for
- 9: end for
- 10: end for
- 11: return English translation e from best hypothesis in span $[0, l_f]$

Chart Organization

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses¹
- Hypothesis = translation of span with target-side constituent

¹In the book, they are called chart entries.

Dynamic Programming

Applying rule creates new hypothesis

E nar

Dynamic Programming

Another hypothesis

Both hypotheses are indistiguishable in future search \rightarrow can be recombined

	•		*) Q (*
Mariana Neves	Tree-based Models	January 25th, 2016	14 / 75

Recombinable States

Recombinable?

NP: a cup of coffee
NP: a cup of coffee
NP: a mug of coffee

N/lor	1000	- 1	011	00
IVIAL	Idiid.	1.1	ev	

æ

イロト イ団ト イヨト イヨト

Recombinable States

Recombinable?

Yes, iff max. 2-gram language model is used

3

(日) (周) (三) (三)

Recombinability

Hypotheses have to match in

- span of input words covered
- output constituent label
- first *n*-1 output words

not properly scored, since they lack context

• last *n*-1 output words

still affect scoring of subsequently added words,

just like in phrase-based decoding

(日) (周) (三) (三)

(*n* is the order of the n-gram language model)

Language Model Contexts

When merging hypotheses, internal language model contexts are absorbed

(日) (周) (三) (三)

- Number of hypotheses in each chart cell explodes
- ⇒ need to discard bad hypotheses e.g., keep 100 best only
 - Different stacks for different output constituent labels?
 - Cost estimates
 - translation model cost known
 - language model cost for internal words known
 - \rightarrow estimates for initial words
 - outside cost estimate? (how useful will be a NP covering input words 3–5 later on?)

- 4 同 6 4 日 6 4 日 6

• Many subspan sequences

for all sequences s of hypotheses and words in span [start,end]

Many rules

for all rules r

• Checking if a rule applies not trivial

rule r applies to chart sequence s

 \Rightarrow Unworkable

E 6 4 E 6

• Prefix tree data structure for rules

Dotted rules

• Cube pruning

3

(日) (同) (三) (三)

Storing Rules

- First concern: do they apply to span?
 - \rightarrow have to match available hypotheses and input words
- Example rule

$\text{NP} \rightarrow \text{X}_1 \text{ des } \text{X}_2 \ | \ \text{NP}_1 \text{ of the } \text{NN}_2$

- Check for applicability
 - is there an initial sub-span that with a hypothesis with constituent label ${\rm NP?}$
 - is it followed by a sub-span over the word des?
 - is it followed by a final sub-span with a hypothesis with label NN?
- Sequence of relevant information

 $NP \bullet des \bullet NN \bullet NP_1 of the NN_2$

イロッ イボッ イヨッ イヨッ 二日

Rule Applicability Check

Trying to cover a span of six words with given rule

NP • des • NN \rightarrow NP: NP of the NN

N/lor	1000	Novoc
IVIAL	lana.	neves

3

(日) (同) (三) (三)

First: check for hypotheses with output constituent label NP

NP • des • NN \rightarrow NP: NP of the NN

1/100	uana N	01000
IVIAL	lana n	leves

3

24 / 75

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Found $\ensuremath{\operatorname{NP}}$ hypothesis in cell, matched first symbol of rule

NP • des • NN \rightarrow NP: NP of the NN

Wariana Neves			N 1	
Ivialiana iveves	1/1 21	רמרוי		00
	IVIAI	Ialla	1464	

3

25 / 75

(日) (同) (三) (三)

Rule Applicability Check

Matched word des, matched second symbol of rule

NP • des • NN \rightarrow NP: NP of the NN

N/Dr	1202	VIAVAC.

(日) (同) (三) (三)

3

Found a ${\scriptstyle NN}$ hypothesis in cell, matched last symbol of rule

NP • des • NN \rightarrow NP: NP of the NN

Matched entire rule \rightarrow apply to create a ${\tt NP}$ hypothesis

NP • des • NN \rightarrow NP: NP of the NN

Look up output words to create new hypothesis (note: there may be many matching underlying NP and NN hypotheses)

NP • des • NN \rightarrow NP: NP of the NN

- What we showed:
 - given a rule
 - check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
 - given the underlying chart cells and input words
 - find which rules apply

- 4 回 ト - 4 回 ト

Prefix Tree for Rules

Highlighted Rules

- 4 同 6 4 日 6 4 日 6

Dotted Rules: Key Insight

• If we can apply a rule like

 $p \rightarrow A B C \mid x$

to a span

 \bullet Then we could have applied a rule like $q \rightarrow A \ B \ \mid \ y$

to a sub-span with the same starting word

 \Rightarrow We can re-use rule lookup by storing A B • (dotted rule)

Mariana Neves

- 31

(日) (周) (三) (三)

Finding Applicable Rules in Prefix Tree

das	Haus	des	Architekten	Frank	Gehry

Covering the First Cell

æ

Image: A matrix

Looking up Rules in the Prefix Tree

æ

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Taking Note of the Dotted Rule

January 25th, 2016 36 / 75

æ

< 1[™] >
Checking if Dotted Rule has Translations

- 一司

Applying the Translation Rules

æ

イロト イヨト イヨト イヨト

Looking up Constituent Label in Prefix Tree

DET: that DET: the das •				-	
das	Haus	des	Architekten	Frank	Gehry

Add to Span's List of Dotted Rules

DET: that DET: the DET @ das •		1	Ambialam	Escala	Calar
das	Haus	des	Architekten	Frank	Genry

- 2

40 / 75

<ロ> (日) (日) (日) (日) (日)

Moving on to the Next Cell

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Looking up Rules in the Prefix Tree

January 25th, 2016

3

42 / 75

イロト イポト イヨト イヨト

Taking Note of the Dotted Rule

æ

Checking if Dotted Rule has Translations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Applying the Translation Rules

DET: that DET: the DET @ das 0	NP: house NN: house house				
das	Haus	des	Architekten	Frank	Gehry

Looking up Constituent Label in Prefix Tree

Add to Span's List of Dotted Rules

3

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

More of the Same

January 25th, 2016 4

<ロ> (日) (日) (日) (日) (日)

48 / 75

Moving on to the Next Cell

N/Dr	1222	Nevee

January 25th, 2016 49 / 75

3

<ロ> (日) (日) (日) (日) (日)

Cannot consume multiple words at once All rules are extensions of existing dotted rules Here: only extensions of span over das possible

< 一型

Extensions of Span over das

- N /I	2010	-	~ ~	- N I	0	100
101		6 11			181	185

January 25th, 2016 51 / 75

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Looking up Rules in the Prefix Tree

3

イロト イポト イヨト イヨト

Taking Note of the Dotted Rule

M	ar	iana	N	lev	es
	•••	ana			~~

January 25th, 2016 53 / 75

3

<ロ> (日) (日) (日) (日) (日)

Checking if Dotted Rules have Translations

3

イロト イポト イヨト イヨト

Applying the Translation Rules

NN: house

NN 🕘 NP 🖯

Haus

house 🛛

DET: the

das

das 🖸

DET: the

des

DET 🙆

des-

NN: architect

Architekten-

Architekten

NN \varTheta

NNP: Frank

Frank

Frank-

NNP: Gehry

Gehry

<ロ> (日) (日) (日) (日) (日)

NNP• Gehry•

January 25th, 2016

55 / 75

э

Looking up Constituent Label in Prefix Tree

1/101	 - NL2	21/00
IVIAI		eves
		_

January 25th, 2016 56 / 75

3

イロト イポト イヨト イヨト

Add to Span's List of Dotted Rules

M	ar	iana	N	lev	es
	•••	ana			~~

January 25th, 2016 57 / 75

3

イロト イポト イヨト イヨト

Extend lists of dotted rules with cell constituent labels

span's dotted rule list (with same start) plus neighboring span's constituent labels of hypotheses (with same end)

Reflections

- Complexity $O(rn^3)$ with sentence length *n* and size of dotted rule list *r*
 - may introduce maximum size for spans that do not start at beginning
 - may limit size of dotted rule list (very arbitrary)

• Does the list of dotted rules explode?

- Yes, if there are many rules with neighboring target-side non-terminals
 - such rules apply in many places
 - rules with words are much more restricted

イロト 不得下 イヨト イヨト

Difficult Rules

- Some rules may apply in too many ways
- Neighboring input non-terminals

$VP \rightarrow gibt X_1 X_2 \mid gives NP_2 to NP_1$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals

 $VP \rightarrow trifft \ x_1 \ x_2 \ x_3 \ heute \mid meets \ NP_1 \ today \ PP_2 \ PP_3$

• will get out of hand even for syntax models

- 4 同 6 4 日 6 4 日 6

- We know which rules apply
- We know where they apply (each non-terminal tied to a span)
- But there are still many choices
 - many possible translations
 - each non-terminal may match multiple hypotheses
 - ightarrow number choices exponential with number of non-terminals

Rules with One Non-Terminal

Found applicable rules $PP \rightarrow des | ... | NP ...$

- Non-terminal will be filled any of h underlying matching hypotheses
- Choice of t lexical translations
- \Rightarrow Complexity O(ht)

(note: we may not group rules by target constituent label, so a rule NP \rightarrow des X | the NP would also be considered here as well)

・ロト ・ 同ト ・ ヨト ・ ヨト

Rules with Two Non-Terminals

Found applicable rule ${\rm NP} \rightarrow {\rm X}_1 \ {\rm des} \ {\rm X}_2 \ | \ {\rm NP}_1 \ ... \ {\rm NP}_2$

- Two non-terminal will be filled any of *h* underlying matching hypotheses each
- Choice of t lexical translations
- \Rightarrow Complexity $O(h^2t)$ a three-dimensional "cube" of choices

(note: rules may also reorder differently)

イロト 不得下 イヨト イヨト

Cube Pruning

Arrange all the choices in a "cube"

(here: a square, generally a orthotope, also called a hyperrectangle)

Mariana Neves

Create the First Hypothesis

• Hypotheses created in cube: (0,0)

Add ("Pop") Hypothesis to Chart Cell

- Hypotheses created in cube: ϵ
- Hypotheses in chart cell stack: (0,0)

1/101	 - NL2	21/00
IVIAI		eves
		_

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,0)
- Hypotheses in chart cell stack: (0,0)

- N / I	O KIL	202	-N	011	00
1.01	an	ана	18	iev	

Pop Best Hypothesis to Chart Cell

- Hypotheses created in cube: (0,1)
- Hypotheses in chart cell stack: (0,0), (1,0)

Create Neighboring Hypotheses

- Hypotheses created in cube: (0,1), (1,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0)

More of the Same

- Hypotheses created in cube: (0,1), (1,2), (2,1), (2,0)
- Hypotheses in chart cell stack: (0,0), (1,0), (1,1)

- Several groups of rules will apply to a given span
- Each of them will have a cube
- We can create a queue of cubes
- $\Rightarrow\,$ Always pop off the most promising hypothesis, regardless of cube

• May have separate queues for different target constituent labels

Bottom-Up Chart Decoding Algorithm

- 1: for all spans (bottom up) do
- 2: extend dotted rules
- 3: for all dotted rules do
- 4: find group of applicable rules
- 5: create a cube for it
- 6: create first hypothesis in cube
- 7: place cube in queue
- 8: end for
- 9: for specified number of pops do
- 10: pop off best hypothesis of any cube in queue
- 11: add it to the chart cell
- 12: create its neighbors
- 13: end for
- 14: extend dotted rules over constituent labels
- 15: end for
Outside Cost Estimation

- Which spans should be more emphasized in search?
- Initial decoding stage can provide outside cost estimates

• For instance, use of a restricted grammar

- N /I	OKIO DC	s N.	0.1	00
101	anana		iev	

- Synchronous context free grammars
- Extracting rules from a syntactically parsed parallel corpus
- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning

3

→

• Statistical Machine Translation, Philipp Koehn (chapter 11).

3

(日) (周) (三) (三)