Word-based models

IT Systems Engineering | Universität Potsdam

Dr. Mariana Neves (adapted from the original slides of Prof. Philipp Koehn)

November 7th, 2016

- IBM Model 1
- IBM Model 2
- IBM Model 3
- IBM Model 4
- IBM Model 5

(日) (同) (三) (三)

- This model generates many different translations for a sentence, each with a different probability
- The estimation is based on the individual words, not on the whole sentence

- breaks up the process in many smaller steps,
- models these steps with probability distributions,
- and combines the steps into a coherent story

- IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1,...,e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = rac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

・ロト ・ 同ト ・ ヨト ・ ヨト

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{\mathbf{a}(j)})$$

• The right side is the product over the **lexical translation probabilities** for all *l_e* generated output words *e_i*.

Image: A matrix of the second seco

$$p(\mathbf{e}, a|\mathbf{f}) = rac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- The left side is a fraction necessary for normalization.
- It uses $(l_f + 1)$ input tokens because we also consider the NULL token.
- There are $(l_f + 1)^{l_e}$ different alignments that map $(l_f + 1)$ input words into l_e output words.
- parameter ϵ is a normalization constant

Example

da	as]	Haus	i	st		kle	ein
е	t(e f)	е	t(e f)	е	t(e f)		е	t(e f)
the	0.7	house	0.8	is	0.8	1	small	0.4
that	0.15	buildin	g 0.16	's	0.16		little	0.4
which	0.075	home	0.02	exists	0.02		short	0.1
who	0.05	househo	old 0.015	has	0.015		minor	0.06
this	0.025	shell	0.005	are	0.005		petty	0.04

 $p(e, a|f) = \frac{\epsilon}{5^4} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$ $= \frac{\epsilon}{5^4} \times 0.7 \times 0.8 \times 0.8 \times 0.4$ $= 0.0028\epsilon$

- 3

イロト 不得下 イヨト イヨト

- We will learn these probabilities based on sentence-aligned paired texts
- Corpora are not usually word-aligned, just sentence-aligned
- Problem of incomplete data
- Typical problem in machine learning which is usually modeled as a hidden variable

- We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the *alignments*,
 - \rightarrow we could estimate the parameters of our generative model
 - if we had the parameters,
 - \rightarrow we could estimate the $\emph{alignments}$

Incomplete data

- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate steps 2–3 until convergence

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

< m

- After one iteration
- Alignments, e.g., between la and the are more likely

(日) (周) (三) (三)

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely

イロト 不得下 イヨト イヨト

- Convergence
- Inherent hidden structure revealed by EM

- (A 🖓

EM Algorithm

• Parameter estimation from the aligned corpus

IV	aria	na IN	leves

I I → < I → < I → < I → </p>
November 7th, 2016

16 / 72

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

• We need to be able to compute:

• Expectation-Step: probability of alignments

• Maximization-Step: count collection

- We need to compute $p(a|\mathbf{e}, \mathbf{f})$
- Applying the chain rule:

$$p(a|\mathbf{e},\mathbf{f}) = rac{p(\mathbf{e},a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

• We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

= $\sum_{a(1)=0}^{l_{f}} \dots \sum_{a(l_{e})=0}^{l_{f}} p(\mathbf{e}, a|\mathbf{f})$
= $\sum_{a(1)=0}^{l_{f}} \dots \sum_{a(l_{e})=0}^{l_{f}} \frac{\epsilon}{(l_{f}+1)^{l_{e}}} \prod_{j=1}^{l_{e}} t(e_{j}|f_{a(j)})$

20 / 72

IBM Model 1 and EM: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$
$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

• Note the trick in the last line

- removes the need for an exponential number of products
- ightarrow this makes IBM Model 1 estimation tractable

1 / 2 /		NOVOC
IVIAL	Idiid.	INEVES

The Trick

(case
$$l_e = l_f = 2$$
)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} &= \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ &= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ &= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ &= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ \end{split}$$

• Combine what we have:

 $p(\mathbf{a}|\mathbf{e},\mathbf{f}) = p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f})$

$$= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j | f_i)} \\ = \prod_{j=1}^{l_e} \frac{t(e_j | f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j | f_i)}$$

< A

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts over all possible alignments, weighted by their probabilities
- Evidence from a sentence pair **e**,**f** that word *e* is a translation of word *f*:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplification as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f; \mathbf{e}, \mathbf{f}) = \frac{\sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f}))}{\sum_{e} \sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f}))}$$

M.	ari	ana	N	eves

IBM Model 1 and EM: Pseudo-code

Inpu	it: set of sentence pairs (e , f)
Out	put: translation prob. $t(e f)$
1:	initialize $t(e f)$ uniformly
2:	while not converged do
3:	// initialize
4:	count(e f) = 0 for all e, f
5:	total(f) = 0 for all f
6:	for all sentence pairs (e,f) do
7:	<pre>// compute normalization</pre>
8:	for all words e in e do
9:	s-total $(e) = 0$
10:	for all words f in f do
11:	s-total $(e) += t(e f)$
12:	end for
13:	end for

14:	<pre>// collect counts</pre>
15:	for all words e in e do
16:	for all words f in f do
17:	$count(e f) += \frac{t(e f)}{s-total(e)}$
18:	$total(f) += \frac{t(e f)}{s-total(e)}$
19:	end for
20:	end for
21:	end for
22:	<pre>// estimate probabilities</pre>
23:	for all foreign words f do
24:	for all English words e do
25:	$t(e f) = \frac{\operatorname{count}(e f)}{\operatorname{total}(f)}$
26:	end for
27:	end for
28:	end while

November 7th, 2016

(日) (周) (三) (三)

æ

Convergence

е	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

November 7th, 2016

< A

< ∃ →

2

- How can we measure whether our model converged?
- We are building a model for translation and we want it to perform well when translating unseen sentences.

Starting with the uniform probabilities:

$$p(\text{the book}|\text{das Buch}) = \frac{\epsilon}{2^2}(0.25 + 0.25)(0.25 + 0.25) = 0.0625\epsilon$$

3

< A

After the first iteration:

$$t(e|f) = \begin{cases} 0.5 & \text{if } e = \text{the and } f = \text{das} \\ 0.25 & \text{if } e = \text{the and } f = \text{buch} \\ 0.25 & \text{if } e = \text{book and } f = \text{das} \\ 0.5 & \text{if } e = \text{book and } f = \text{buch} \end{cases}$$

 $p(the \ book|das \ Buch) = rac{\epsilon}{2^2}(0.5+0.25)(0.25+0.5) = 0.140625\epsilon$

< 4 → <

3

This will ultimately converge to:

$$t(e|f) = \begin{cases} 1 & \text{if } e = \text{the and } f = \text{das} \\ 0 & \text{if } e = \text{the and } f = \text{buch} \\ 0 & \text{if } e = \text{book and } f = \text{das} \\ 1 & \text{if } e = \text{book and } f = \text{buch} \end{cases}$$

$$p(the \ book|das \ Buch) = rac{\epsilon}{2^2}(1+0)(0+1) = 0.25\epsilon$$

3

- How well does the model fit the data?
- Perplexity: derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(\mathbf{e}_s | \mathbf{f}_s)$$

M	aria	ana I	Vev	es
	anne	ania i	400	60

- 一司

Perplexity

• Example (ϵ =1)

	initial	1st it.	2nd it.	3rd it.	 final
<i>p</i> (the haus das haus)	0.0625	0.1875	0.1905	0.1913	 0.1875
p(the book das buch)	0.0625	0.1406	0.1790	0.2075	 0.25
<i>p</i> (a book ein buch)	0.0625	0.1875	0.1907	0.1913	 0.1875
perplexity	4095	202.3	153.6	131.6	 113.8

- The perplexity is guaranteed to decrease or stay the same in each iteration.
- In the IBM model 1, the EM training will eventually reach a global minimum.

- ∢ 🗇 እ

- Our translation model cannot decide between small and little
- Sometime one is preferred over the other:
 - small step: 2,070,000 occurrences in the Google index
 - \bullet little step: 257,000 occurrences in the Google index
- Language model
 - estimate how likely a string is English
 - based on n-gram statistics
 - unigram: when considering a single word (e.g., small)
 - bigram: when considering a sequence of two consecutive words (e.g., small step)
 - trigram: when considering a sequence of three consecutive words (e.g., small step to)

- We break the long sentences into smaller steps for which we can collect sufficient statistics.
- For instance, trigram models (n=3):

$$p(\mathbf{e}) = p(e_1, e_2, ..., e_n)$$

= $p(e_1)p(e_2|e_1)...p(e_n|e_1, e_2, ..., e_{n-1})$
 $\simeq p(e_1)p(e_2|e_1)...p(e_n|e_{n-2}, e_{n-1})$

- Statistics can be computed based on both the English dataset of the parallel corpus.
- But also on any text resource in this language (English).

- We would like to integrate a language model.
- We look for the best translation *e* for the input foreign sentence *f*.
- Use use Bayes rule to include p(e):

$$\begin{aligned} \operatorname{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) &= \operatorname{argmax}_{\mathbf{e}} \frac{p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e})}{p(\mathbf{f})} \\ &= \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e}) \end{aligned}$$

- Applying Bayes rule also called noisy channel model
 - we observe a distorted message R (here: a foreign string f)
 - we have a model on how the message is distorted (here: translation model)
 - we have a model on what messages are probably (here: language model)
 - we want to recover the original message S (here: an English string e)

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

<ロ> (日) (日) (日) (日) (日)

• Generative model: break up translation process into smaller steps

- IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - ullet to an English sentence ${f e}=(e_1,...,e_{\it l_e})$ of length $\it l_e$
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = rac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{\mathbf{a}(j)})$$

• parameter ϵ is a normalization constant

\mathbf{N}	aria	na N	eves

Adding a model of alignment:

- We model alignment with an alignment probability distribution.
- We translate foreign word at position *i* to English word at position *j*:

 $\textit{a(i|j, l_e, l_f)}$

We have a two-step process:

- lexical translation step: translation probability (e.g., t(is|ist))
- alignment step: alignment probability (e.g., a(2|5, 6, 5))

• Putting everything together

$$p(\mathbf{e}, a|\mathbf{f}) = \epsilon \prod_{j=1}^{l_e} t(e_j|f_{a(j)}) a(a(j)|j, l_e, l_f)$$

 $\bullet\,$ EM training of this model works the same way as IBM Model 1

< m

IBM Model 2: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(e, a|f)$$

= $\epsilon \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)}) a(a(j)|j, l_e, l_f)$
= $\epsilon \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i) a(i|j, l_e, l_f)$

• We use the same trick, just like Model 1

Μ	aria	na N	leves

• We can compute the fractional counts for lexical translations:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{j=1}^{l_e} \sum_{i=0}^{l_f} \frac{t(e|f)a(i|j, l_e, l_f)\delta(e, e_j)\delta(f, f_i)}{\sum_{i'=0}^{l_f} t(e|f_{i'})a(i'|j, l_e, l_f)}$$

• and the counts for alignments:

$$c(i|j; l_e, l_f \mathbf{e}, \mathbf{f}) = \frac{t(e_j|f_i)a(i|j, l_e, l_f)}{\sum_{i'=0}^{l_f} t(e|f_{i'})a(i'|j, l_e, l_f)}$$

46 / 72

- It is very similar to that for IBM Model 1.
- But we do not initialize the probabilities for t(e|f) and $a(i|j, l_e, l_f)$ uniformly.
 - We get estimations from a few iterations of Model 1 instead.
 - Model 1 is a special case of Model 2 with $a(i|j, l_e, l_f)$ fixed to $\frac{1}{l_f+1}$.

IBM Model 3

November 7th, 2016

- (A 🖓

∃ →

3

- Fertility: number of English words generated by a foreign word
- Modeled by distribution $n(\phi|f)$, in which $\phi = 0, 1, 2, ...$
- Example:

 $egin{aligned} n(1|haus) &\simeq 1 \ n(2|zum) &\simeq 1 \ n(0|ja) &\simeq 1 \end{aligned}$

- 32

(日) (周) (三) (三)

- Modeled by distribution $n(\phi|NULL)$
- This is modeled as a special step as inserted words depends on the sentence length.
 - probability p_1 to introduce a NULL token
 - or probability $p_0 = 1 p_1$ **not** to introduce a NULL token

IBM Model 3 - four-step process

November 7th, 2016

- Fertility: modeled by $n(\phi|f)$, e.g., n(2|zum).
- NULL insertion: modeled by p_1 (e.g., NULL insertion after ich), and $p_0 = 1 p_1$ (e.g., no NULL insertion after nicht).
- Lexical translation: modeled by t(e|f) (Model 1), e.g., translating nicht into not with p(not|nicht).
- Distortion: modeled by $d(j|i, l_e, l_f)$, e.g., distortion of go to gehe with d(4|2, 7, 6).

Distortion instead of alignment

Same translation, same alignment, but in a different way

- 1 - 2	DELE	nn N	01/00
1.0			

- The alignment function (Models 1 and 2) predicts foreign input word positions conditioned to English output word positions, i.e., from output to input.
- The distortion function (Model 3) predicts output word positions based on input word positions, i.e., from input to output.

- Fertility: each input word f_i generates ϕ_i output words according to $n(\phi_i | f_i)$.
- NULL Token insertion: its number ϕ_0 depends on the number of output words generated by the input words.
 - Each generated word may insert a NULL token.
 - Number of generated words from foreign input words:

 $\sum_{i=1}^{l_f} \phi_i = l_e - \phi_0$

• Probability of generating ϕ_0 words from the NULL token:

 $p(\phi_0) = \binom{l_e - \phi_0}{\phi_0} p_1^{\phi_0} p_0^{l_e - 2\phi_0}$

Formulation of IBM Model 3

Combining the four steps:

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(e, a|f)$$

= $\sum_{a(1)=0}^{l_{f}} \dots \sum_{a(l_{e})=0}^{l_{f}} {l_{e} - \phi_{0} \choose \phi_{0}} p_{1}^{\phi_{0}} p_{0}^{l_{e}-2\phi_{0}}$
 $\times \prod_{j=1}^{l_{f}} \phi_{i}! n(\phi_{i}|f_{i})$
 $\times \prod_{j=1}^{l_{e}} t(e_{j}|f_{a(j)}) d(j|a(j), l_{e}, l_{f})$

• This time we cannot reduce the complexity from exponential to polynomial.

Mariana Neves

Word-Based Models

November 7th, 2016

56 / 72

- Training IBM Model 3 with the EM algorithm
 - The trick that reduces exponential complexity does not work anymore
 - ightarrow Not possible to exhaustively consider all alignments
- Two tasks:
 - Finding the most probable alignment by hill climbing
 - Sampling: collecting additional variations to calculate statistics

Hill climbing

http://www35.homepage.villanova.edu/abdo.achkar/csc8530/proj.htm

		- N I	
1//13	riana	- 1\	ev/es
IVIG	nana		0,000

Word-Based Models

November 7th, 2016 58 / 72

3

<ロ> (日) (日) (日) (日) (日)

- Finding the most probable alignment by hill climbing
 - start with initial alignment (e.g., Model 2)
 - change alignments for individual words
 - keep change if it has higher probability
 - continue until convergence

- Collecting variations to collect statistics
 - all alignments found during hill climbing
 - neighboring alignments that differ by a move or a swap

- 一司

- Better reordering model
- Reordering in IBM Model 2 and 3
 - recall: $d(j|i, I_e, If)$
 - for large sentences (large l_f and l_e), sparse and unreliable statistics
 - phrases tend to move together
- Relative reordering model: relative to previously translated words (cepts)

IBM Model 4: Cepts

Foreign words with non-zero fertility forms cepts (here 5 cepts)

cept π_i	π_1	π_2	π_3	π_4	π_5
foreign position [i]	1	2	4	5	6
foreign word $f_{[i]}$	ich	gehe	nicht	zum	haus
English words { <i>e_j</i> }	Ι	go	not	to,the	house
English positions { <i>j</i> }	1	4	3	5,6	7
center of cept \odot_i	1	4	3	6	7

The center of a cept is defined as the ceiling of the average of the output word positions for that cept.

j	1	2	3	4	5	6	7
ej	Ι	do	not	go	to	the	house
in cept $\pi_{i,k}$	$\pi_{1,0}$	$\pi_{0,0}$	$\pi_{3,0}$	$\pi_{2,0}$	$\pi_{4,0}$	$\pi_{4,1}$	$\pi_{5,0}$
\odot_{i-1}	0	-	4	1	3	-	6
$j - \odot_{i-1}$	+1	-	$^{-1}$	+3	+2	-	+1
distortion	$d_1(+1)$	1	$d_1(-1)$	$d_1(+3)$	$d_1(+2)$	$d_{>1}(+1)$	$d_1(+1)$

- Center \odot_i of a cept π_i is ceiling(avg(j))
- Three cases:
 - NULL generated words: uniform distribution
 - first word of a cept: $d_1(j \odot_{i-1})$
 - next words of a cept: $d_{>1}(j \pi_{i,k-1})$

- We also use the hill climbing strategy (just like in Model 3)
- But due to the complexity of the model (distortion, cepts), a hill-climbing method based on Model 3 probabilities is proposed.

- IBM Models 1–4 are *deficient*
 - some impossible translations have positive probability
 - multiple output words may be placed in the same position
 - ightarrow probability mass is wasted
- IBM Model 5 fixes deficiency by keeping track of **vacant word positions** (available positions)

- Number of vacancies in the English output interval [1; j]: v_j
- Distortion probabilities:

for initial word in cept: $d_1(v_j | \mathcal{B}(e_j), v_{\odot_{i-1}}, v_{max})$ for additional words: $d_{>1}(v_j - v_{\pi_{i,k-1}} | \mathcal{B}(e_j), v_{max'})$

- Maximum number of available vacancies: v_{max}
- Number of vacancies at the position of the previously placed English word: $v_{\pi_{i,k-1}}$

IBM Model 5: Example

cep	t	vacancies						parameters for d_1				
$f_{[i]}$	$\pi_{i,k}$	v_1	v_2	v_3	v_4	v_5	v_6	v_7	j	v_j	v_{max}	$v_{\odot_{i-1}}$
		I	do	not	go	to	the	house				
NULL	$\pi_{0,1}$	1	2	3	4	5	6	7	2	-	-	-
ich	$\pi_{1,1}$	1	-	2	3	4	5	6	1	1	6	0
gehe	$\pi_{2,1}$	-	-	1	2	3	4	5	4	2	5	0
nicht	$\pi_{3,1}$	-	-	1	-	2	3	4	3	1	4	1
zum	$\pi_{4,1}$	-	-	-	-	1	2	-	5	1	2	0
	$\pi_{4,2}$	-	-	-	-	-	1	2	6	-	-	-
haus	$\pi_{5,1}$	-	-	-	-	-	-	1	7	1	1	0

→ Ξ →

æ

・ロト ・回ト ・ヨト

- IBM Models were the pioneering models in statistical machine translation
- Introduced important concepts
 - generative model
 - EM training
 - reordering models
- No longer state of the art models for machine translation...
- ... but still in common use for word alignment (e.g., GIZA++ toolkit)

- Expectation Maximization (EM) Algorithm
- Noisy Channel Model
- IBM Models 1–5
 - IBM Model 1: lexical translation
 - IBM Model 2: alignment model
 - IBM Model 3: fertility
 - IBM Model 4: relative alignment model
 - IBM Model 5: deficiency

• Statistical Machine Translation, Philipp Koehn (section 4.1-4.4).

M	aria	ana	Ν	lev	es
	anne	ania		i C V	60

Image: Image:

3