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Neural MT

● „Neural MT went from a fringe research activity in 2014 to the 
widely-adopted leading way to do MT in 2016.“  (NMT ACL‘16)

● Google Scholar

● Since 2012: 28,600

● Since 2015: 22,500

● Since 2016: 16,100
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Neural MT
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Neural MT

● „Neural Machine Translation is the approach of modeling the 
entire MT process via one big artificial neural network“ (NMT 
ACL‘16)
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Artificial neuron

● Input are the dendrites; Output are the axons

● Activation occurs if the sum of the weighted inputs is higher 
than a threshold (message is passed)

8 (http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/)



Artificial neural networks (ANN)

● Statistical models inspired on biological neural networks

● They model and process nonlinear relationships between input 
and output

● They are based on adptative weights and a cost function

● Based on optimization techniques, e.g., gradient descent and 
stochastic gradient descent
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Basic architecture of ANNs

● Layers of artificial neurons

● Input layer, hidden layer, output layer

● Overfitting can occur with increasing model complexity

10 (http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/)



Deep learning

● Certain types of NN that consume very raw input data

● Data is processed through many layers of nonlinear 
transformations
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Deep learning – feature learning

● Deep learning excels in unspervised feature extraction, i.e., 
automatic derivation of meaningful features from the input 
data

● They learn which features are important for a task

● As opposed to feature selection and engineering, usual tasks in 
machine learning approaches

12



Deep learning - architectures

● Feed-forward neural networks

● Recurrent neural network

● Multi-layer perceptrons

● Convolutional neural networks

● Recursive neural networks

● Deep belief networks

● Convolutional deep belief networks

● Self-Organizing Maps

● Deep Boltzmann machines

● Stacked de-noising auto-encoders
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Language Models (LM) for MT
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LM for MT
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N-gram Neural LM with feed-forward NN

17
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)

Input as one-hot 
representations 
of the words in 
context u (n-1),

where n is the 
order of the 
language model



N-gram Neural LM with 

feed-forward NN

● Input: context of n-1 previous words

● Output: probability distribution for 
next word

● Size of input/output: vocabulary size

● One or many hidden layers

● Embedding layer is lower 
dimensional and dense

– Smaller weight matrices

– Learns to map similar words to 
similar points in the vector 
space

18
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)



One-hot representation

● Corpus: „the man runs.“

● Vocabulary = {man,runs,the,.}

● Input/output for p(runs|the man)

19

0
0
1
0

x
0
=

1
0
0
0

x
1
=

0
1
0
0

y
true

=



Softmax function

● It normalize the output vectors to probability distribution 
(sum=1)

● Its computational cost is linear to vocabulary size

● When combined with stochastic gradient descend, it minimizes 
cross-entropy (perpexity)

20

p( y= j∣x)=
e xT w j

∑
k=1

K

exT wk

xT w is the inner product of x (sample vector) and w (weight vector)



Softmax function

● Example: 

– input = [1,2,3,4,1,2,3]

– softmax = [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

● The output has most of its weight where the '4' was in the original 
input. 

● The function highlights the largest values and suppress values 
which are significantly below the maximum value.

21
(https://en.wikipedia.org/wiki/Softmax_function)



Classical neural language model 
(Bengio et al. 2003)

22

(http://sebastianruder.com/word-embeddings-1/)



Feed-forward neural language model (FFNLM) in SMT

● One more feature in the log-linear phrase-based model
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Recurrent neural networks language model (RNNLM)

● Recurrent neural networks (RNN) is a class of NN in which 
connections between the units form a directed cycle

● It makes use of sequential information

● It does not assume independence between input and output

24

(http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)



RNNLM

● Condition on arbitrarly long contexts

● No Markov assumption

● It reads one word at a time, updates network incrementally

25

(http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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Translation modelling

● Source sentence S of length m: x1, . . . , xm

● Target sentence T of length n: y1, . . . , yn

27

T *
=argmax

t
P (T∣S )

P (T∣S)=P ( y1 , ... , yn∣x1 , ... , xm)

P (T∣S)=∏
i=1

n

P( yi∣y0 , ... , yi−1 , x1 , ... , xm)



Encoder-Decoder

● Two RNNs (usually LSTM):

– encoder reads input and produces hidden state 
representations

– decoder produces output, based on last encoder hidden 
state

28
[Picture from NMT ACL16 slides]



Long short-term memory (LSTM)

● It is a special kind of RNN

● It connects previous information to the present task

● It is capable to learn long-term dependencies

29 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Long short-term memory (LSTM)

● LSTMs have four interating layers

● But there are many variations of the architecture

30 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Encoder-Decoder

● Encoder-decoder 
are learned jointly

● Supervision signal 
from parallel 
corpora is 
backpropagated

31 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



The Encoder (continuous-space representation)

● The encoder linearly projects the 1-of-K coded vector wi with a 
matrix E which has as many columns as there are words in the 
source vocabulary and as many rows as you want (typically, 100 
– 500.)

32

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



The Encoder (summary vector)

● Last encoder hidden state summarizes source sentence

● But quality decreases for long sentences (fixed-size vector)

33 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



The Encoder (summary vector)

● Projection to 2D using Principal Componnet Analysis (PCA)

34 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



The Decoder

● The inverse of the encoder

● Based on the softmax function

35

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



Problem with simple E-D architectures

● Fixed-size vector from which the decoder needs to generate a 
full translation

● The context vector must contain every signgle detail of the 
source sentence

● The dimensionality of the contect vector must be large enough 
that a sentence of any length can be compressed

36 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Problem with simple E-D architectures

● Large models are necessary to cope with large sentences

37 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)

(experiments with
small models)



Bidirectional recurrent neural network (BRNN)

● Use a memory with as many banks as source words, instead of a 
fixed-size context vector

● BRNN = forward RNN + backwards RNN

38

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)



Bidirectional recurrent neural network (BRNN)

● At any point, the forward and backward vectors summarizes a 
whole input sentece 

39 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Bidirectional recurrent neural network (BRNN)

● This mechanism allows storage of a source sentence as a 
variable-length representation

40 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Soft Attention mechanism

● It is a small NN that takes as input the previous decoder‘s hidden 
state (what has been translated)

41 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Soft Attention mechanism

● It contains one hidden layer and outputs a scalar

● Normalization (to sum up to 1) is done with softmax function

42 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Soft Attention mechanism

● The model learn attention (alignment) between two languages

43 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)



Soft Attention mechanism

● With this mechanism, the quality of the translation does not drop 
as the sentence length increases

44 (https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Google Multilingual NMT system (Nov/16)

● Simplicity: 

– Single NMT model to translate between multiple languages, 
instead of many models (1002)

● Low-resource language improvement: 

– Improve low-resource language pair by mixing with high-resource 
languages into a single model

● Zero-shot translation:

– It learns to perform implicit bridging between language pairs 
never seen explicitly during training

46 (https://arxiv.org/abs/1611.04558)



Google NMT system (Sep-Oct/16)

● Deep LSTM network with 8 encoder and 8 decoder layers

47

(https://arxiv.org/abs/1609.08144)



Google NMT system (Sep-Oct/16)

● Normal LSTM (left) vs. stacked LSTM (right) with residual 
connections

48 (https://arxiv.org/abs/1609.08144)



Google NMT system (Sep-Oct/16)

● Output from LSTMf and LSTMb are first concatenated and then 
fed to the next LSTM layer LSTM1

49 (https://arxiv.org/abs/1609.08144)



Google NMT system (Sep-Oct/16)

● Wordpiece model (WPM) implementation initially developed to 
solve a Japanese/Korean segmentation problem

● Data-driven approach to maximize the language-model 
likelihood of the training data

50 (https://arxiv.org/abs/1609.08144)

(“_” is a special character added to mark the beginning of a word.)



Google Multilingual NMT system (Nov/16)

● ??

51 (https://arxiv.org/abs/1611.04558)



Google Multilingual NMT system (Nov/16)

● Introduction of an artificial token at the beginning of the input 
sentence to indicate the target language the model should 
translate to.

52 (https://arxiv.org/abs/1611.04558)



Google Multilingual NMT system (Nov/16)

● Experiments: Many to one

53 (https://arxiv.org/abs/1611.04558)



Google Multilingual NMT system (Nov/16)

● Experiments: One to many

54 (https://arxiv.org/abs/1611.04558)



Google Multilingual NMT system (Nov/16)

● Experiments: Many to many

55 (https://arxiv.org/abs/1611.04558)



Google Multilingual NMT system (Nov/16)

● Experiments: Zero-Shot translation

56 (https://arxiv.org/abs/1611.04558)



Summary

● Very brief introduction to neural networks

● Neural language models

– One-hot representations (1-of-K coded vector)

– Softmax function

● Neural machine translation

– Recurrent NN; LSTM

– Encoder and Decoder

– Soft attention mechanism (BRNN)

● Google MT

– Architecture  and multilingual experiments
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Suggested reading

● Artificial Intelligence, Deep Learning, and Neural Networks 
Explained: 
http://www.innoarchitech.com/artificial-intelligence-deep-learn
ing-neural-networks-explained/

● Introduction to Neural Machine Translation with GPUs: 
https://devblogs.nvidia.com/parallelforall/introduction-neural-
machine-translation-with-gpus/

● Neural Machine Translation slides, ACL‘2016: 
https://sites.google.com/site/acl16nmt/

● Neural Machine Translation slides (Univ. Edinburgh) 
http://statmt.org/mtma16/uploads/mtma16-neural.pdf
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