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Neural MT

* ,Neural MT went from a fringe research activity in 2014 to the
widely-adopted leading way to do MT in 2016.“ (NMT ACL‘16)

* Google Scholar
* Since 2012: 28,600
* Since 2015: 22,500
* Since 2016: 16,100
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Neural MT

»~Neural Machine Translation is the approach of modeling the
entire MT process via one big artificial neural network” (NMT
ACL'16)

Input
text

Translated

Decoder
text

» Encoder

[Picture from NMT ACL16 slides]]
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Artificial neuron

Input are the dendrites; Output are the axons

Activation occurs if the sum of the weighted inputs is higher
than a threshold (message is passed)

activation
functon

X @ net input
‘ net;

transfer
function

0.
xfi! /
threshold

(http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/)
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Artificial neural networks (ANN)

« Statistical models inspired on biological neural networks

« They model and process nonlinear relationships between input
and output

« They are based on adptative weights and a cost function

« Based on optimization techniques, e.g., gradient descent and
stochastic gradient descent
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Basic architecture of ANNSs

* Layers of artificial neurons

* I|Input layer, hidden layer, output layer

* Overfitting can occur with increasing model complexity
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(http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/)
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Deep learning
« Certain types of NN that consume very raw input data

« Data is processed through many layers of nonlinear
transformations

11
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Deep learning - feature learning

* Deep learning excels in unspervised feature extraction, i.e.,
automatic derivation of meaningful features from the input
data

* They learn which features are important for a task

 As opposed to feature selection and engineering, usual tasks in
machine learning approaches
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Deep learning - architectures

* Feed-forward neural networks

* Recurrent neural network

* Multi-layer perceptrons

e Convolutional neural networks

* Recursive neural networks
 Deep belief networks

e Convolutional deep belief networks
* Self-Organizing Maps

* Deep Boltzmann machines

* Stacked de-noising auto-encoders
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Language Models (LM) for MT
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LM for MT

Help with reordering

pra(the house is small) > p;,(small the is house)

Help with word choice

puv (I am going home) > p, (I am going house)
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N-gram Neural LM with feed-forward NN

output
P(w|u)
hidden Input as one_-hot
h representations
of the words in
hidden context u (n-1),
hy
_ where n is the
;:sgf order of the
cbeCaings language model
input
words

(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)
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N-gram Neural LM with
feed-forward NN

Input: context of n-1 previous words

Output: probability distribution for
next word

Size of input/output: vocabulary size
One or many hidden layers

Embedding layer is lower
dimensional and dense

- Smaller weight matrices

- Learns to map similar words to
similar points in the vector
space
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output
P(w | u)

hidden
hs

hidden
hy

input
embeddings

input
words

(https:/imww3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)



One-hot representation
« Corpus: ,the man runs.”

« Vocabulary = {man,runs,the,.}

« Input/output for p(runs|the man)
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Softmax function

« It normalize the output vectors to probability distribution
(sum=1)

* |ts computational cost is linear to vocabulary size

« When combined with stochastic gradient descend, it minimizes
cross-entropy (perpexity)

x'w is the inner product of x (sample vector) and w (weight vector)
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Softmax function

« Example:
- input=1[1,2,3,4,1,2,3]
- softmax = [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

« The output has most of its weight where the '4' was in the original
input.

« The function highlights the largest values and suppress values
which are significantly below the maximum value.

(https://en.wikipedia.org/wiki/Softmax_function)



(http://sebastianruder.com/word-embeddings-1/)
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Classical neural language model
(Bengio et al. 2003)

i-th output = P(w; = i | context)

softmax
o9 - - - L L XK ] )
AN
. \
mostj computation here \

shared parameters

index for w;_, 1 index for w;_»
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Feed-forward neural language model (FFNLM) in SMT

« One more feature in the log-linear phrase-based model

/
p(e, alf) = exp(Ay Z log gb(l_‘,-|é,-)+
i=1

p(x) = exp Z Aihi(x) ‘ Adz log d(a; — bi_1 — 1)+

el

Am Y _log prumleiler...ei 1))
i=1
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(http:/iwww.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)
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Recurrent neural networks language model (RNNLM)

* Recurrent neural networks (RNN) is a class of NN in which
connections between the units form a directed cycle

* It makes use of sequential information

* |t does not assume independence between input and output
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A recurrent neural network and the unfolding in time of the computation involved in its forward

computation. Source: Nature
24



(http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
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RNNLM

« Condition on arbitrarly long contexts

« No Markov assumption

« |t reads one word at a time, updates network incrementally

target chars:

output layer

hidden layer

input layer
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Translation modelling

Source sentence S of length m: x,, . . ., X,

Target sentence T of length n: y,;, . .., v,

T =argmax P(T|S)
t

P(TIS)=P(y,,.c, V. |X{5een, X))

T|S HPyzb’o’ s Yic1s Xy

i=1

 X)
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Encoder-Decoder

 Two RNNSs (usually LSTM):

- encoder reads input and produces hidden state
representations

- decoder produces output, based on last encoder hidden

state
Input Translated
text » Encoder Decoder foxt

)8 [Picture from NMT ACL16 slides]



Long short-term memory (LSTM)

« |tis a special kind of RNN
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* |t connects previous information to the present task

« |t is capable to learn long-term dependencies
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The repeating module in a standard RNN contains a single layer.
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(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Long short-term memory (LSTM)

« LSTMs have four interating layers

« But there are many variations of the architecture
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The repeating module in an LSTM contains four interacting layers.

30 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Encoder-Decoder

« Encoder-decoder
are learned jointly

« Supervision signal
from parallel
corpora is
backpropagated

Continuous-space

1-of-K L:|'I-||'ing Wiorg
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f = (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

=

Word Ssamplc

L rrent
~

i rrcn
State

¢ = (Economic, growth, has, slowed, down, in, recent, years, .)

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)
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The Encoder (continuous-space representation)

« The encoder linearly projects the 1-of-K coded vector w; with a

matrix E which has as many columns as there are words in the
source vocabulary and as many rows as you want (typically, 100
- 500.)

Recurrent

State

Word Representation

Continuous-space

I-0f-K coding

o

e = (Economic, growth, has, slowed, down, in, recent, years, .

Figure 4. Step 2: A one-hot vector to a continuous-space representation.
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The Encoder (summary vector)

« Last encoder hidden state summarizes source sentence

« But quality decreases for long sentences (fixed-size vector)

Recurrent

State

Word Representation

Continuous-space

1 -o0f-K coding

(T
[ ENEE
|
|
|
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e = (Economic, growth, has, slowed, down, in, recent, years, .)

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)
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The Encoder (summary vector)
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Projection to 2D using Principal Componnet Analysis (PCA)
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Figure 6. 2-D Visualization of Sentence Representations from [Sutskever et al., 2014]. Similar sentences are close

together in summary-vector space.

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/)
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The Decoder

The inverse of the encoder

Based on the softmax function

Recurrent

e = (Economic, growth, has, slowed, down, i, recent, years, .)
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Problem with simple E-D architectures

* Fixed-size vector from which the decoder needs to generate a
full translation

« The context vector must contain every signgle detail of the
source sentence

« The dimensionality of the contect vector must be large enough
that a sentence of any length can be compressed

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Problem with simple E-D architectures

« Large models are necessary to cope with large sentences

20 =N , . . . :
i Nis: | —  Source text
15k _ ‘\ """ Reference text |_
\] — - Both

(experiments with
small models)

BLEU score
o

]|

A R T S S
0 10 20 30 40 50 60 70 &0
Sentence length

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Bidirectional recurrent neural network (BRNN)

« Use a memory with as many banks as source words, instead of a
fixed-size context vector

« BRNN = forward RNN + backwards RNN

Bidirectional

Recurrent
State

Word Representation

Continuous-space

I-0f-K coding

i e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Bidirectional recurrent neural network (BRNN)

« At any point, the forward and backward vectors summarizes a
whole input sentece

Bidirectional

Recurrent
State

Continuous-space

l-of-K coding  Word Representation

e = (Economic, growth, has, slowed, down, in, recent, years, .)

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Bidirectional recurrent neural network (BRNN)

« This mechanism allows storage of a source sentence as a
variable-length representation

Bidirectional
Recurrent

State

Continuous-space

l-of-K coding  Word Representation

e = (Economic, growth, has, slowed, down, in, recent, years, .)

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Soft Attention mechanism

« |t is a small NN that takes as input the previous decoder’s hidden
state (what has been translated)

f= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

Word
Ssample

Recumrent

Attention
Mechanism

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Figure 3. Attention Mechanism takes into consideration what has been translated and one of the source words.

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Soft Attention mechanism

« |t contains one hidden layer and outputs a scalar

« Normalization (to sum up to 1) is done with softmax function

f=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

)
":"._E-ul
-
=0
5
%I::f.'
& &

Aticntion
Mechanism
[

—

T e s NeRone o roNe e

¢ = (Economic, growth, has, slowed, down, in, recent, years, .)

Figure 3. Attention Mechanism takes into consideration what has been translated and one of the source words.

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Soft Attention mechanism

« The model learn attention (alignment) between two languages

Economic growth has slowed down in recent years

[ /\ 7

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

La croissance économique s' est ralentie ces derniéres années .

Figure &. Sample translations made by the neural machine translation model with the soft-attention mechanism.
Edge thicknesses represent the attention weights found by the attention model.

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Soft Attention mechanism

With this mechanism, the quality of the translation does not drop
as the sentence length increases

RNNsearch-50 |
BN Nsearch-30
SH == RNNene-50
RN Nene-230

BLEU score

] 1) 200

K1l Y all (sl

sentence length

Figure 7. RMNsearch-50 is a neural machine translation model with the attention mechanism trained on all the

sentence pairs of length at most 0.

(https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
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Google Multilingual NMT system (Nov/16)

* Simplicity:

- Single NMT model to translate between multiple languages,
instead of many models (10032)

* Low-resource language improvement:

- Improve low-resource language pair by mixing with high-resource
languages into a single model

e Zero-shot translation:

- It learns to perform implicit bridging between language pairs
never seen explicitly during training

(https://arxiv.org/abs/1611.04558)



(https://arxiv.org/abs/1609.08144)
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Google NMT system (Sep-Oct/16)

« Deep LSTM network with 8 encoder and 8 decoder layers
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Google NMT system (Sep-Oct/16)

« Normal LSTM (left) vs. stacked LSTM (right) with residual
connections

48 (https://arxiv.org/abs/1609.08144)



Hasso
Plattner
Institut

Google NMT system (Sep-Oct/16)

 Output from LSTM; and LSTM, are first concatenated and then
fed to the next LSTM layer LSTM,

Concat Concat
@ G Bidirectional
' x5 Bottom Layer !

h

49 (https://arxiv.org/abs/1609.08144)
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Google NMT system (Sep-Oct/16)

Wordpiece model (WPM) implementation initially developed to
solve a Japanese/Korean segmentation problem

Data-driven approach to maximize the language-model
likelihood of the training data

e Word: Jet makers feud over seat width with big orders at stake

e wordpieces: J et makers feud over seat width with big orders at stake

(“_" is a special character added to mark the beginning of a word.)

(https://arxiv.org/abs/1609.08144)
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Google Multilingual NMT system (Nov/16)
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(https://arxiv.org/abs/1611.04558)
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Google Multilingual NMT system (Nov/16)

* Introduction of an artificial token at the beginning of the input
sentence to indicate the target language the model should
translate to.

Hello, how are you? -> ;Hola como estas?

: 1

<2es> Hello, how are you? -> ;Hola como estas?

52 (https://arxiv.org/abs/1611.04558)
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Google Multilingual NMT system (Nov/16)

« Experiments: Many to one

Table 1: Many to One: BLEU scores on various data sets for single language pair and multilingual models.

Model Single Multi  Diff

WMT German— English (oversampling) 30.43  30.59 +40.16
WMT French— English (oversampling) 35.50  35.73  +0.23
WMT German—English (no oversampling) 30.43 30.54 +40.11
WMT French—English (no oversampling) 35.50  36.77 +0.27

Prod Japanese—English  23.41  23.87 +40.46
Prod Korean—English  25.42  25.47  +40.05

Prod Spanish—English  38.00 38.73 +40.73
Prod Portuguese—English  44.40 45.19 +0.79

53 (https://arxiv.org/abs/1611.04558)
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Google Multilingual NMT system (Nov/16)

 Experiments: One to many

Table 2: One to Many: BLEU scores on various data sets for single language pair and multilingual models.

Model Single Multi  Diff

WMT English—German (oversampling) 24.67 24.97 +0.30
WMT English—French (oversampling) 38.95 36.84 -2.11
WMT English—German (no oversampling) 24.67 22.61 -2.06
WMT English—French (no oversampling) 38.95 38.16 -0.79

Prod English—Japanese 23.66 23.73 +0.07
Prod English—Korean 19.75 19.58 -0.17

Prod English—Spanish  34.50  35.40 +0.90
Prod English—Portuguese 38.40 38.63 +0.23

54 (https://arxiv.org/abs/1611.04558)
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Google Multilingual NMT system (Nov/16)

 Experiments: Many to many

Table 3: Many to Many: BLEU scores on various data sets for single language pair and multilingual models.

Model Single Multi  Diff

WMT English—German (oversampling) 24.67 24.49 -0.18
WMT English—French (oversampling) 38.95 36.23 -2.72
WMT German— English (oversampling) 30.43 29.84 -0.59
WMT French— English (oversampling) 35.50 34.89 -0.61
WMT English—German (no oversampling) 24.67 22.61 -2.06
WMT English—French (no oversampling) 38.95 38.16 -0.79
WMT German—English (no oversampling) 30.43 29.22 -1.21
WMT French—English (no oversampling) 35.50 35.93  +0.43
Prod English—Japanese 23.66 23.12 -0.54

Prod English—Korean 19.75 19.73 -0.02

Prod Japanese—English 23.41 2286 -0.55

Prod Korean—English 2542 24.76  -0.66

Prod English—Spanish  34.50 34.69 +0.19

Prod English—Portuguese 38.40 37.25 -1.15

Prod Portuguese—English  44.40 44.02 -0.38

Prod Spanish—English  38.00 37.65 -0.35

55

(https://arxiv.org/abs/1611.04558)
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Google Multilingual NMT system (Nov/16)

« Experiments: Zero-Shot translation

Table 5: Portuguese—Spanish BLEU scores using various models.

Model BLEU
(a) PBMT bridged 28.99
(b) NMT bridged 30.91
(c) NMT Pt—Es 31.50
(d) Model 1 (Pt—En, En—Es) 21.62
(e) Model 2 (En«+{Es, Pt}) 24.75
(f) Model 2 + incremental training  31.77

(https://arxiv.org/abs/1611.04558)
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Summary

Very brief introduction to neural networks

Neural language models

- One-hot representations (1-of-K coded vector)
- Softmax function

Neural machine translation

- Recurrent NN; LSTM

- Encoder and Decoder

- Soft attention mechanism (BRNN)
Google MT

- Architecture and multilingual experiments
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Suggested reading

Artificial Intelligence, Deep Learning, and Neural Networks
Explained:
http://www.innoarchitech.com/artificial-intelligence-deep-learn
ing-neural-networks-explained/

Introduction to Neural Machine Translation with GPUs:
https://devblogs.nvidia.com/parallelforall/introduction-neural-
machine-translation-with-gpus/

Neural Machine Translation slides, ACL‘2016:
https://sites.google.com/site/acllenmt/

Neural Machine Translation slides (Univ. Edinburgh)
http://statmt.org/mtmal6/uploads/mtmal6-neural.pdf


http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/
http://www.innoarchitech.com/artificial-intelligence-deep-learning-neural-networks-explained/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/
https://sites.google.com/site/acl16nmt/
http://statmt.org/mtma16/uploads/mtma16-neural.pdf
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