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Parts of speech (POS)
● 8 Parts of speech are traditionally used to summarize linguistic 

knowledge

– Noun, Verb, Preposition, Adverb, Article, Interjection, Pronoun, 
Conjunction

● The modified list is currently used

– Noun, Verb, Auxiliary, Preposition, Adjective, Adverb, Number, 
Determiner, Interjection, Pronoun, Conjunction, Particle

● Known as:

– Parts of speech

– Lexical categories

– Word classes

– Morphological classes

– Lexical tags
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POS examples
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Noun book/books, nature, Germany, Sony

Verb eat, wrote

Auxiliary can, should, have

Adjective new, newer, newest

Adverb well, urgently

Numbers 872, two, first

Determiner the, some

Conjunction and, or

Pronoun he, my

Preposition to, in

Particle off, up

Interjection Ow, Eh



Open vs. Closed Classes
● Closed (limited number of words, do not grow usually)

– Determiners: the, some, a, an, ...

– Pronouns: she, he, I, ...

– Prepositions: to, in, on, under, over, by, ...

– Auxiliaries: can, should, have, had, ...

– Conjunctions: and, or

– Particles: off, up

– Interjections: Ow, Eh

● Open (unlimited number of words)

– Nouns

– Verbs

– Adjectives

– Adverbs

07.05.2014Natural Language Processing – Part-of-speech tagging and named-entity recognition6



Applications
● Speech Synthesis

● Parsing

● Machine Translation

● Information Extraction
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Applications
● Speech Synthesis

– „content“

● „Eggs have a high protein content.“
● „She was content to step down after four years as chief 

executive.“
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http://www.thefreedictionary.com/content



Applications
● Machine Translation

– „I like ...“

● „Ich mag ….“
● „Ich wie ...“
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Applications
● Parsing
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http://nlp.stanford.edu:8080/parser/index.jsp



Applications
● Information Extraction
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http://www.nactem.ac.uk/tsujii/GENIA/tagger/



POS Tagset
● There are so many parts of speech tagsets we can draw

● Choosing a standard tagset is essential

● Tag types

– Coarse-grained

● Noun, verb, adjective, ...
– Fine-grained

● noun-proper-singular, noun-proper-plural, noun-
common-mass, ..

● verb-past, verb-present-3rd, verb-base, ...
● adjective-simple, adjective-comparative, ...
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POS Tagset
● Brown tagset

– Brown corpus

– 87 tags

● C5 tagset

– 61 tags

● C7 tagset

– 146 tags!!

● Penn TreeBank

– A large annotated corpus of English tagset: 45 tags
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Penn TreeBank Tagset
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http://www.americannationalcorpus.org/OANC/penn.html



POS Tagging
● Definition

– The process of assigning a part of speech to each word in a 
text

● Challenge

– Words often have more than one POS

– On my back[NN]

– The back[JJ] door

– Win the voters back[RB]

– Promised to back[VB] the bill
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Distribution of Ambiguities
● 45-tags Brown corpus (word types)

– Unambiguous (1 tag): 38,857

– Ambiguous: 8,844

● 2 tags: 6,731
● 3 tags: 1,621
● 4 tags: 357
● 5 tags: 90
● 6 tags: 32
● 7 tags: 6 (well, set, round, open, fit, down)
● 8 tags: 4 ('s, half, back, a)
● 9 tags: 3 (that, more, in)

07.05.2014Natural Language Processing – Part-of-speech tagging and named-entity recognition16



POS Tagging

● Plays well with others

● Plays (NNS/VBZ)

● well (UH/JJ/NN/RB)

● with (IN)

● others (NNS)

● Plays[VBZ] well[RB] with[IN] others[NNS]
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Performance

● Baseline model

– Tagging unambiguous words with the correct label

– Tagging ambiguous words with their most frequent label

– Tagging unknown words as a noun

● Performs around 90%
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Outline

● Part of Speech Tagging

● Named Entity Recognition

● Sequential Modeling
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Motivation
● Factual information and knowledge are normally expressed by 

named entities

– Who, Whom, Where, When, Which, ...

● Question answering systems are looking for named entities to 
answer users' questions

● Named entity recognition is the core of the information 
extraction systems
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Applications
● Finding the important information of an event from an invitation

– Date, Time, Location, Host, Contact person

● Finding the main information of a company from its reports

– Founder, Board members, Headquarters, Profits

● Finding information from biomedical literature

– Drugs, Genes, Interaction products

● Finding the target of sentiments

– Products, Celebrities
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Applications
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Named Entity Recognition (NER)
● Finding named entities in a text

● Classifying them to the corresponding classes

● „Steven Paul Jobs, co-founder of Apple Inc, was born in 
California.”

●  „Steven Paul Jobs, co-founder of Apple Inc, was born in 
California.”

● „Steven Paul Jobs [PER], co-founder of Apple Inc [ORG], was born in 
California [LOC].”
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Named Entity Classes
● Person

– Person names

● Organization

– Companies, Government, Organizations, Committees, ..

● Location

– Cities, Countries, Rivers, ..

● Date and time expression

● Measure

– Percent, Money, Weight, ...

● Book, journal title

● Movie title

● Gene, disease, drug name
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Named Entity Classes (IO)
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Named Entity Classes (BIO/IOB)
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Named Entity Classes (BIEWO)
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NER Ambiguity (IO vs. IOB encoding)
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NER Ambiguity

● Ambiguity between named entities and common words

– May: month, verb, surname

– Genes: VIP, hedgehog, deafness, wasp, was, if

● Ambiguity between named entity types

– Washington (Location or Person)

07.05.2014Natural Language Processing – Part-of-speech tagging and named-entity recognition29



Outline

● Part of Speech Tagging

● Named Entity Recognition

● Sequential Modeling

07.05.2014Natural Language Processing – Part-of-speech tagging and named-entity recognition30



Task

● Similar to a normal classification task

– Feature Selection

– Algorithm
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POS Tagging
● Features

– Word: 

● the: the  DT→

– Prefixes: 

● unbelievable: un-  JJ→

– Suffixes: 

● slowly: -ly  RB→

– Lowercased word: 

● Importantly: importantly  RB→

– Capitalization: 

● Stefan: [CAP]  NNP→

– Word shapes: 

● 35-year: d-x  JJ→
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POS Tagging
● Model

– Maximum Entropy: P(t|w)

● Overall words: 93.7%
● Unknown words: 82.6%
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NER
● Features

– Word: 

● Germany: Germany
– POS tag: 

● Washington: NNP
– Capitalization: 

● Stefan: [CAP]
– Punctuation: 

● St.: [PUNC]
– Lowercased word: 

● Book: book
– Suffixes: 

● Spanish: -ish
– Word shapes: 

● 1920-2008: dddd-dddd
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NER
● List lookup

– Extensive list of names are available via various resources

– Gazetteer: a large list of place names

– Biomedical: database of genes, proteins, drugs names

– Usually good precision, but low recall (variations)
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POS Tagging
● More Features?

They[PRP] left[VBD] as[IN] soon[RB] as[IN] he[PRP] arrivied[VBD]

● Better Algorithm

– Using Sequence Modeling
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Sequence Modeling
● Many of the NLP techniques should deal with data represented 

as sequence of items

– Characters, Words, Phrases, Lines, ...

● I[PRP] saw[VBP] the[DT] man[NN] on[IN] the[DT] roof[NN] .

● Steven[PER] Paul[PER] Jobs[PER]   ,[O] co-founder[O] of[O] Apple[ORG] Inc[ORG]  
,[O] was[O] born[O] in[O] California[LOC].

07.05.2014Natural Language Processing – Part-of-speech tagging and named-entity recognition37



Sequence Modeling
● Making a decision based on the

– Current Observation

● Word (W0)

● Prefix
● Suffix
● Lowercased word
● Capitalization
● Word shape

– Surrounding observations

● W+1

● W−1

– Previous decisions

● T−1

● T−2
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Learning Model
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Sequence Modeling
● Greedy inference

– Starting from the beginning of the sequence

– Assigning a label to each item using the classifier in that 
position

– Using previous decisions as well as the observed data

● Beam inference

– Keeping the top k labels in each position

– Extending each sequence in each local way

– Finding the best k labels for the next position
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Hidden Markov Model (HMM)
● Finding the best sequence of tags (t1 ...tn ) that corresponds to 

the sequence of observations (w1 ...wn )

● Probabilistic View

– Considering all possible sequences of tags

– Choosing the tag sequence from this universe of 
sequences, which is most probable given the observation 
sequence
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Using Bayes Rule
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t̂1
n
=argmax

t1
n P (t1

n
∣w1

n
)

P (A∣B)=
P (B∣A)⋅P (A)

P (B)

P(t1
n
∣w1
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)=
P(w1

n∣t 1
n)⋅P (t 1

n)

P(w1
n
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t̂1
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n)⋅P (t 1
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likelihood prior probability



Using Markov Assumption
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t̂1
n=argmax

t1
n P (w1

n∣t1
n)⋅P (t 1
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∣t 1
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n
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n
)≃ ∏ P (t i∣t i−1)

n

i=1

t̂1
n
=argmax

t1
n ∏ P (wi∣t i)⋅P (t i∣t i−1)

n

i=1

(it depends only on its POS tag and independent of other words)

(it depends only on the previous POS tag, thus, bigram)



Two Probabilities
● The tag transition probabilities: P(ti|ti−1)

– Finding the likelihood of a tag to proceed by another tag

– Similar to the normal bigram model
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P(t i∣t i−1)=
C (t i−1 , t i)

C (t i−1)



Two Probabilities
● The word likelihood probabilities: P(wi|ti)

– Finding the likelihood of a word to appear given a tag
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P(w i∣t i)=
C ( t i ,w i)

C (t i)



Two Probabilities

I[PRP] saw[VBP] the[DT] man[NN?] on[] the[] roof[] .
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P([NN ]∣[DT ])=
C ([DT ] ,[NN ])

C ([DT ])

P(man∣[NN ])=
C ([NN ] ,man)
C ([NN ])



Ambiguity

Secretariat[NNP] is[VBZ] expected[VBN] to[TO] race[VB] tomorrow[NR] .

People[NNS] inquire[VB] the[DT] reason[NN] for[IN] the[DT] race[NN] .
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Ambiguity

Secretariat[NNP] is[VBZ] expected[VBN] to[TO] race[VB] tomorrow[NR] .
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NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO NN NR

Secretariat is expected to race tomorrow



Ambiguity

Secretariat[NNP] is[VBZ] expected[VBN] to[TO] race[VB] tomorrow[NR] .

P(VB|TO) = 0.83

P(race|VB) = 0.00012

P(NR|VB) = 0.0027

P(VB|TO)P(NR|VB)P(race|VB) = 0.00000027
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NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow



Ambiguity

Secretariat[NNP] is[VBZ] expected[VBN] to[TO] race[VB] tomorrow[NR] .

P(NN|TO) = 0.00047

P(race|NN) = 0.00057

P(NR|NN) = 0.0012

P(NN|TO)P(NR|NN)P(race|NN) = 0.00000000032
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NNP VBZ VBN TO NN NR

Secretariat is expected to race tomorrow



Hidden Markov Model (HMM)
● Finite autonom: set of states and a set of transitions between 

states, according to the input observations

● Weighted finite-state automaton

– Each arc is associated with a probability

– The probabilities leaving any arc must sum to one

● Markov chain

– Special case of weighted autonom

– Input sequence uniquely determines which states the autonom 
will go through

– Useful for assigning probabilities for unambiguous sequences
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Hidden Markov Model (HMM)
● POS tagging, NER

– Ambiguous

– We observe the words, not the POS tags or entity classes

● HMM

– Observed events: words

– Hidden events: POS tags, entity classes
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Hidden Markov Model (HMM)
● Transition probabilities:
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TO2

Start0

VB1 NN3

End4

a02

a01

a03
a31

a13

a14

a34
a33

a32

a23a21

a12

a11

a22

a24

P(t i∣t i−1)



Hidden Markov Model (HMM)
● Word likelihood probabilities:
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TO2

Start0

VB1 NN3

End4

B2
P(“aardvark”|TO)
..
P(“race”|TO)
..
P(“the”|TO)
..
P(“to”|TO)
..
P(“zebra”|TO)

B1
P(“aardvark”|VB)
..
P(“race”|VB)
..
P(“the”|VB)
..
P(“to”|VB)
..
P(“zebra”|VB)

B3
P(“aardvark”|NN)
..
P(“race”|NN)
..
P(“the”|NN)
..
P(“to”|NN)
..
P(“zebra”|NN)

P(w i∣t i)



The Viterbi Algorithm
● Probability matrix

– Columns corresponding to inputs (words)

– Rows corresponding to possible states (POS tags)

● Move through the matrix in one pass filling the columns left to 
right using the transition probabilities and observation 
probabilities

● Storing the max probability path to each cell (not all paths) 
using dynamic programming
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The Viterbi Algorithm
● vt-1: previous Viterbi path probability

– From the previous time step

● aij: transition probability

– From previous state qi to current state qj

● bj(ot): state observation likelihood

– Observation symbol ot given the current state j
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The Viterbi Algorithm
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Further Reading
● Speech and Language Processing

– Chapter 5: POS Tagging

– Chapter 6: MaxEnt & HMM

– Chapter 22.1: NER
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