Natural Language Processing SoSe 2014

IT Systems Engineering | Universität Potsdam

Parsing

- Finding structural relationships between words in a sentence
- Applications
 - Spell checking
 - Speech recognition
 - Machine translation
 - Relation extraction

Outline

- Phrase Structure
- Syntactic Parsing
 - CKY Algorithm
- Statistical Parsing

Outline

- Phrase Structure
- Syntactic Parsing
 - CKY Algorithm
- Statistical Parsing

Constituency

- Working based on Constituency (Phrase structure)
 - Organizing words into nested constituents
 - Showing that groups of words can act as single units
 - Forming coherent classes from these units that can behave in similar ways
 - With respect to their internal structure
 - With respect to other units in the language
 - Considering a head word for each constituent

Constituency

the writer talked to the audience about his new book.

- about his new book the writer talked to the audience. \checkmark
- the writer talked about to the audience his new book.

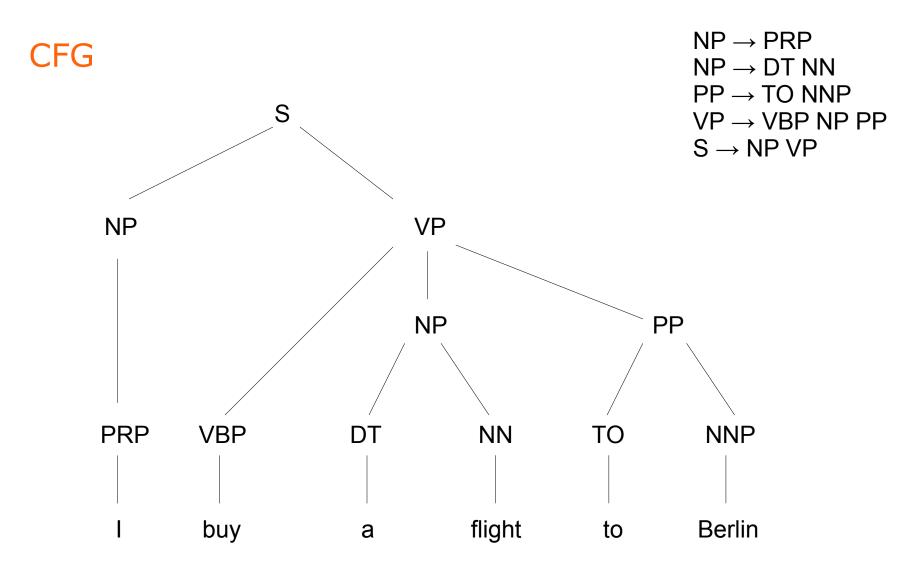
Context Free Grammar (CFG)

- Grammar G consists of
 - Terminals (T)
 - Non-terminals (N)
 - Start symbol (S)
 - Rules (R)

Context Free Grammar (CFG)

- Terminals
 - The set of words in the text
- Non-Terminals
 - The constituents in a language (noun phrase, verb phrase,)
- Start symbol
 - The main constituent of the language (sentence)
- Rules
 - Equations that consist of a single non-terminal on the left and any number of terminals and non-terminals on the right

Context Free Grammar (CFG)


$S \rightarrow NP VP$	
$S \rightarrow VP$	$PRP \to I$
$NP \rightarrow NN$	$NN \rightarrow book$
$NP \rightarrow PRP$	$NN \to DOOK$
$NP \rightarrow DT NN$	$VBP \to buy$
$NP \rightarrow NP NP$	DT → a
$NP \rightarrow NP PP$	
$VP \rightarrow VBP NP$	$NN \rightarrow flight$
$VP \rightarrow VBP NP PP$	$TO \rightarrow to$
$VP \rightarrow VP PP$	
$VP \rightarrow VP NP$	$NNP \rightarrow Berlin$
$PP \rightarrow TO NNP$	

CFG

Outline

- Phrase Structure
- Syntactic Parsing
 - CKY Algorithm
- Statistical Parsing

Parsing

- Taking a string and a grammar and returning proper parse tree(s) for that string
- Covering all and only the elements of the input string
- Reaching the start symbol at the top of the string

Main Grammar Fragments

- Sentence
- Noun Phrase
 - Agreement
- Verb Phrase
 - Sub-categorization

Grammar Fragments: Sentence

- Declaratives
 - A plane left.
 - $S \rightarrow NP VP$
- Imperatives
 - Leave!
 - S \rightarrow VP
- Yes-No Questions
 - Did the plane leave?
 - S \rightarrow Aux NP VP
- Wh Questions
 - Which airlines fly from Berlin to London?
 - S → Wh-NP VP

Grammar Fragments: NP

- Each NP has a central critical noun called head
- The head of an NP can be expressed using
 - Pre-nominals: the words that can come before the head
 - Post-nominals: the words that can come after the head

Grammar Fragments: NP

- Pre-nominals
 - Simple lexical items: the, this, a, an, ...
 - a car
 - Simple possessives
 - John's car
 - Complex recursive possessives
 - John's sister's friend's car
 - Quantifiers, cardinals, ordinals...
 - three cars
 - Adjectives
 - large cars

Grammar Fragments: NP

- Post-nominals
 - Prepositional phrases
 - I book a flight <u>from Seattle</u>
 - Non-finite clauses (-ing, -ed, infinitive)
 - There is a flight <u>arriving before noon</u>
 - I need to have dinner <u>served</u>
 - Which is the last flight to arrive in Boston?
 - Relative clauses
 - I want a flight that serves breakfast

Agreement

- Having constraints that hold among various constituents
- Considering these constraints in a rule or set of rules
- Example: determiners and the head nouns in NPs have to agree in number
 - This flight
 - Those flights
 - This flights
 - Those flight
- Grammars that do not consider constraints will over-generate
 - Accepting and assigning correct structures to grammatical examples (this flight)
 - But also accepting incorrect examples (these flight)

Agreement at sentence level

- Considering similar constraints at sentence level
- Example: subject and verb in sentences have to agree in number and person
- John flies
- We fly
- John fly
- We flies

Agreement

- Possible CFG solution
 - $S_{sg} \rightarrow NP_{sg} VP_{sg}$
 - $S_{pl} \rightarrow NP_{pl} VP_{pl}$
 - $NP_{sg} \rightarrow Det_{sg} N_{sg}$
 - $NP_{pl} \rightarrow Det_{pl} N_{pl}$
 - $\text{ VP}_{\text{sg}} \rightarrow \text{V}_{\text{sg}} \text{ NP}_{\text{sg}}$
 - $\quad \mathsf{VP}_{\mathsf{pl}} \to \mathsf{V}_{\mathsf{pl}} \; \mathsf{NP}_{\mathsf{pl}}$
 - ...
- Shortcoming:
 - Introducing many rules in the system

Grammar Fragments: VP

- VPs consist of a head verb along with zero or more constituents called arguments
 - VP \rightarrow V (disappear)
 - VP \rightarrow V NP (prefer a morning flight)
 - VP \rightarrow V PP (fly on Thursday)
 - VP \rightarrow V NP PP (leave Boston in the morning)
 - VP \rightarrow V NP NP (give me the flight number)
- Arguments
 - Obligatory: complement
 - Optional: adjunct

Grammar Fragments: VP

- Even though there are many valid VP rules, not all verbs are allowed to participate in all VP rules
 - disappear a morning flight
- Solution (Sub-categorization):
 - Sub-categorizing the verbs according to the sets of VP rules that they can participate in
 - This is a modern take on the traditional notion of transitive/intransitive
 - Modern grammars have more than 100 subcategories

Sub-categorization

- Example:
 - sneeze: John sneezed
 - find: Please find [a flight to NY]_{NP}
 - give: Give [me]_{NP} [a cheaper fair]_{NP}
 - help: Can you help [me]_{NP} [with a flight]_{PP}
 - prefer: I prefer [to leave earlier]_{TO-VP}
 - tell: I was told [United has a flight]_S

- John sneezed the book
- I prefer United has a flight
- Give with a flight

Sub-categorization

- The over-generation problem also exists in VP rules
 - Permitting the presence of strings containing verbs and arguments that do not go together
 - John sneezed the book
 - $VP \rightarrow V NP$
- Solution:
 - Similar to agreement phenomena, we need a way to formally express the constraints

Parsing Algorithms

- Top-Down
 - Starting with the rules that give us an S, since trees should be rooted with an S
 - Working on the way down from S to the words
- Bottom-Up
 - Starting with trees that link up with the words, since trees should cover the input words
 - Working on the way up from words to larger and larger trees

Top-Down vs. Bottom-Up

- Top-Down
 - Only searches for trees that can be answers (i.e. S's)
 - But also suggests trees that are not consistent with any of the words
- Bottom-Up
 - Only forms trees consistent with the words
 - But suggests trees that make no sense globally

Top-Down vs. Bottom-Up

- In both cases;
 - keep track of the search space and make choices
- Solutions
 - Backtracking
 - Making a choice, if it works out then fine
 - If not, then back up and make a different choice ⇒ duplicated work
 - Dynamic programming
 - Avoiding repeated work
 - Solving exponential problems in polynomial time
 - Storing ambiguous structures efficiently

Dynamic Programming Methods

- CKY (Cocke-Kasami-Younger): bottom-up
- Early: top-down

Outline

- Phrase Structure
- Syntactic Parsing
 - CKY Algorithm
- Statistical Parsing

Chomsky Normal Form (CNF)

- Each grammar can be represented by a set of binary rules
 - $A \rightarrow B C$
 - $A \rightarrow W$
- A, B, C are noun-terminals w is a terminal

Chomsky Normal Form

• Converting to Chomsky Normal Form

 $A \rightarrow B C D$ $X \rightarrow B C$ $A \rightarrow X D$

CKY Parsing

$A \rightarrow B C$

- If there is an A somewhere in the input, then there must be a B followed by a C in the input
- If the A spans from i to j in the input, then there must be a k such that i < k < j
 - B spans from *i* to *k*
 - C spans from k to j

CKY Parsing

14.05.2014

CKV Parcing		1			1		,	HPI Has Pla Ins
CKY Parsing	PRP, NP							lins
	[0,1]	[0,2]	[0	,3]	[0,4]	[0,5]	[0,6]	
$PRP \rightarrow I$ $NP \rightarrow PRP$								
		[1,2]	[1	,3]	[1,4]	[1,5]	[1,6]	
			[2	2,3]	[2,4]	[2,5]	[2,6]	
					[3,4]	[3,5]	[3,6]	
						[4,5]	[4,6]	
							[5,6]	
0	۱ 1	buy	2 2	1 3	flight	to 4 5	Berlin	6
35 Natural Language Processing	- Parsing						14 05 2014	

14.05.2014

CKY Parsing						1					HPI Hasso Plattner Institut
CRIFAISIIY	PRP, NP										
	[0,1]	[0,2]		[0,3]		[0,4]		[0,5]		[0,6]	
$PRP \rightarrow I$ $NP \rightarrow PRP$		VBP									
		[1,2]		[1,3]		[1,4]		[1,5]		[1,6]	
$VBP \rightarrow buy$											
				[2,3]		[2,4]		[2,5]		[2,6]	
						[3,4]		[3,5]		[3,6]	
								[4,5]		[4,6]	
										[5,6]	
0	۱ 1	buy	2	а	3	flight	4	to	5	Berlin	6
36 Natural Language Processing			-		U		т		0	14 05 2014	

36 Natural Language Processing – Parsing

14.05.2014

CKY Parsing		_								HPI Hasso Plattner Institut
Citri di Siriy	PRP, NP									Institut
	[0,1]	[0,2]		[0,3]		[0,4]		[0,5]	[0,6]	
$\begin{array}{l} PRP \rightarrow I \\ NP \rightarrow PRP \end{array}$		VBP								-
$VBP \rightarrow buy$		[1,2]		[1,3]		[1,4]		[1,5]	[1,6]	
·				DT						
DT → a				[2,3]		[2,4]		[2,5]	[2,6]	
			L							-
						[3,4]	[[3,5]	[3,6]	
								[4,5]	[4,6]	
									[5,6]	
0	۱ 1	buy	2	а	3	flight	4	to 5	Berlin	6
27 Natural Language Processing	Doroing								14 05 2014	

37 Natural Language Processing – Parsing

14.05.2014

CKY Parsing						1				HPI Hasso Plattner Institut
CREETENSING	PRP, NP					S				
	[0,1]	[0,2]	[0,3]		[0,4]	[0,5]	[0,6]	
$\begin{array}{l} PRP \rightarrow I \\ NP \rightarrow PRP \end{array}$		VBP				VP				
$VBP \rightarrow buy$		[1,2]		[1,3]		[1,4]]	1,5]	[1,6]	_
·			[DT		NP				
DT → a				[2,3]		[2,4]	[/	2,5]	[2,6]	
$NN \rightarrow flight$ $NP \rightarrow DT NN$						NN				
$VP \rightarrow VBP NP \\ S \rightarrow NP VP$						[3,4]	[3,5]	[3,6]	_
							[•	4,5]	[4,6]	_
									[5,6]	
C) 1	buy	2	а	3	flight	4	to 5	Berlin	6
29 Natural Language Drocoscing	Dereine								14 05 2014	

CKY Parsing										HPI H P
CITTUISING	PRP, NP				S					
	[0,1]	[0,2]	[0,3	8]	[0,4]		[0,5]		[0,6]	
$\begin{array}{l} PRP \to I \\ NP \to PRP \end{array}$		VBP			VP					
VRD shuv		[1,2]	[1,3	8]	[1,4]		[1,5]		[1,6]	
$VBP \rightarrow buy$			DT		NP					
DT → a			[2,3	8]	[2,4]		[2,5]		[2,6]	
$\frac{NN \rightarrow flight}{NP \rightarrow DT NN}$					NN					
$\begin{array}{l} VP \to VBP \ NP \\ S \to NP \ VP \end{array}$					[3,4]		[3,5]		[3,6]	_
							ТО			
$TO \rightarrow to$							[4,5]		[4,6]	
									[5,6]	
0	۱ 1	buy	а 2	3	flight	4	to	5	Berlin	6
39 Natural Language Processing	- Parsing								14.05.2014	

CKY Parsing		1						HPI Hasso Plattner Institut
CRI Faising	PRP, NP			S	5		S	Institut
	[0,1]	[0,2]	[0,3]	[(0,4]	[0,5]	[0,6]	
$PRP \rightarrow I$ $NP \rightarrow PRP$		VBP		V	ΥP		VP	
$VBP \rightarrow buy$		[1,2]	[1,3]	[1,4]	[1,5]	[1,6]	
			DT	N	IP			
DT → a			[2,3]	[2	2,4]	[2,5]	[2,6]	
$NN \rightarrow flight$ $NP \rightarrow DT NN$				N	IN			
$VP \rightarrow VBP NP$ S $\rightarrow NP VP$				[3	3,4]	[3,5]	[3,6]	
						ТО	PP	
$TO \rightarrow to$						[4,5]	[4,6]	
$\begin{array}{l} NNP \to Berlin \\ PP \to TO \ NNP \end{array}$							NNP	
$VP \rightarrow VP PP$							[5,6]	
0	۱ 1	buy	<mark>a</mark> 2	fli 3	i <mark>ght</mark> 4	to 5	Berlin 6	;
40 Natural Language Processing	- Parsing						14 05 2014	

40 Natural Language Processing – Parsing

14.05.2014

Outline

- Phrase Structure
- Syntactic Parsing
 - CKY Algorithm
- Statistical Parsing

Probabilistic Context Free Grammar (PCFG)

- Terminals (T)
- Non-terminals (N)
- Start symbol (S)
- Rules (R)
- Probability function (P)

CFG

$S \rightarrow NP VP$	
$S \rightarrow VP$	$PRP \to I$
$NP \rightarrow NN$	$NN \rightarrow book$
$NP \rightarrow PRP$	$MN \rightarrow DOOK$
$NP \rightarrow DT NN$	$VBP \rightarrow buy$
$NP \rightarrow NP NP$	DT → a
$NP \rightarrow NP PP$	
$VP \rightarrow VBP NP$	$NN \rightarrow flight$
$VP \rightarrow VP PP$	$TO \rightarrow to$
$VP \rightarrow VP PP$	
$VP \rightarrow VP NP$	$NNP \rightarrow Berlin$
$PP \rightarrow TO NNP$	

PCFG

0.9	$S \rightarrow NP VP$
0.1	$S \rightarrow VP$
0.3	$NP \rightarrow NN$
0.4	$NP \rightarrow PRP$
0.1	$NP \rightarrow DT NN$
0.2	$NP \rightarrow NP NP$
0.1	$NP \rightarrow NP PP$
0.4	$VP \rightarrow VBP NP$
0.3	$VP \rightarrow VP PP$
0.6	$VP \rightarrow VP PP$
0.5	$VP \rightarrow VP NP$
1.0	$PP \rightarrow TO NNP$

0.6 NN \rightarrow book 0.7 VBP \rightarrow buy 0.8 DT \rightarrow a 0.4 NN \rightarrow flight 1.0 TO \rightarrow to 1.0 NNP \rightarrow Berlin

1.0 PRP \rightarrow I

Treebank

- A treebank is a corpus in which each sentence has been paired with a parse tree
- These are generally created by
 - Parsing the collection with an automatic parser
 - Correcting each parse by human annotators if required
- Requirement: detailed annotation guidelines that provide
 - A POS tagset
 - A grammar
 - Annotation schema
 - Instructions for how to deal with particular grammatical constructions

Penn Treebank

- Penn Treebank is a widely used treebank for English
 - Most well-known section: Wall Street Journal Section
 - 1 M words from 1987-1989

```
(S (NP (NNP John))
(VP (VPZ flies)
(PP (IN to)
(NNP Paris)))
(...))
```



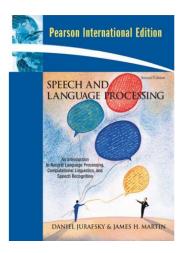
Statistical Parsing

- Considering the corresponding probabilities while parsing a sentence
- Selecting the parse tree which has the highest probability
- Tree and string probabilities
 - P(t): the probability of a tree t
 - Product of the probabilities of the rules used to generate the tree
 - P(s): the probability of a string s
 - Sum of the probabilities of the trees which were created to parse the string

Statistical Parsing

 $P(t) = 0.9 \times 0.4 \times 0.3 \times 1.0 \times 0.7 \times 0.1 \times 0.8 \times 0.4 \times 1.0 \times 1.0 \times 1.0$

Probabilistic						HPI Hasso Plattner
CKY Parsing	PRP, NP 1.0*0.4 [0,1]	<mark>0.8</mark> [0,2]	*0.4*0.1*0 [0,3]	S .7*0.4*0.9 [0,4]	[0,5]	S 1.0*1.0*1.0* 0.8*0.4*0.1*0.7*0.4* [0,6] 1.0*1.0*0.4
$PRP \rightarrow I (1.0)$ $NP \rightarrow PRP (0.4)$		VBP 0.7 [1,2]	0.8*0.4*0 [1,3]	VP 0.1*0.7*0.4 [1,4]	[1,5]	VP 1.0*1.0*1.0* 0.8*0.4*0.1*0.7*0.4* [1,6] 1.0
$VBP \rightarrow buy (0.7)$	l		DT	NP		
DT → a (0.8)			0.8 0 [2,3]	.8*0.4*0.1 [2,4]	[2,5]	[2,6]
$NN \rightarrow flight (0.4)$ $NP \rightarrow DT NN (0.1)$ $VP \rightarrow VBP NP (0.4)$ $S \rightarrow NP VP (0.9)$		L		NN <mark>0.4</mark> [3,4]	[3,5]	[3,6]
TO \rightarrow to (1.0)					TO 1.0 1 [4,5]	PP .0*1.0*1.0 [4,6]
NNP \rightarrow Berlin (1.0) PP \rightarrow TO NNP (1.0) VP \rightarrow VP PP (1.0)				L	L	NNP 1.0 [5,6]
0	l 1	buy 2	а 3	flight 4	to 5	Berlin 6


14.05.2014

Further Reading

- Speech and Language Processing
 - Chapters 12, 13, 14, 15

