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Language Modelling

● Finding the probability of a sentence or a sequence of words

–  P(S) = P(w1 , w2 , w3 , ..., wn )

4

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...



Language Modelling

● Finding the probability of a sentence or a sequence of words

–  P(S) = P(w1 , w2 , w3 , ..., wn )

5

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...



Language Modelling
● Applications

– Word prediction

– Speech recognition

– Handwriting recognition

– Machine translation

– Spell checking
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Applications

● Word prediction

– „natural language..“

● processing
● management
● orange
● ...
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Applications

● Speech recognition

– „Computers can 
recognize speech.“

– „Computers can wreck a 
nice peach.”
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http://worldsgreatestsmile.com/html/phonological_ambiguity.html



Applications
● Handwriting recognition
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https://play.google.com/store/apps/details?id=com.metamoji.mazecen



Applications
● Handwriting recognition

– „Take the money and run“, Woody Allen: „I have a gub.” 
instead of „I have a gun.“
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https://www.youtube.com/watch?v=-UHOgkDbVqc



Applications
● Machine translation

– „The cat eats...“

● „Die Katze frisst...“
● „Die Katze isst...“

– Chinese to English:

● „He briefed to reporters on the chief contents of the statements“
● „He briefed reporters on the chief contents of the statements“
● „He briefed to reporters on the main contents of the statements“
● „He briefed reporters on the main contents of the statements“
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Applications
● Spell checking

– „I want to adver this project“

● „adverb“ (noun)
● „advert“ (verb)

– „They are leaving in about fifteen minuets to go to her house.“

● „minutes“

– „The design an construction of the system will take more than 
a year.“ 

● „and“
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Language Modeling

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn )

– „Computers can recognize speech.“

● P(Computer, can, recognize, speech)
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Conditional Probability
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P (A∣B )=
P (A∩B)

P (A )

P (A , B)=P (A )⋅P (B∣A )

P (A , B ,C , D)=P ( A)⋅P (B∣A )⋅P (C∣A ,B )⋅P (D∣A ,B ,C )



Conditional Probability
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http://setosa.io/conditional/

http://setosa.io/conditional/


Conditional Probability
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P (S )=P (w1)⋅P (w2∣w1)⋅P (w3∣w1 , w2)... P (w n∣w1 , w2 , , w3 , ... , , wn)

P (S )= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i

P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|Computer can)· 
P(speech|Computer can recognize)



Corpus

● Probabilities are based on counting things

● A computer-readable collection of text or speech

– The Brown Corpus

● A million-word collection of samples
● 500 written texts from different genres (newspaper, 

fiction, non-fiction, academic, ...)
● Assembled at Brown University in 1963-1964

● Can also be used for evaluation and comparison purposes
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Corpus
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http://weaver.nlplab.org/~brat/demo/latest/#/not-editable/CoNLL-00-Chunking/train.txt-doc-1



Corpus
● Text Corpora

– Corpus of Contemporary American English

– The British National Corpus

– The International Corpus of English

– The Google N-gram Corpus (
https://books.google.com/ngrams)

– WBI repository (biomedical domain) (
http://corpora.informatik.hu-berlin.de/)
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https://books.google.com/ngrams
http://corpora.informatik.hu-berlin.de/


Word occurrence

● A language consists of a set of „V“ words (Vocabulary)

● A text is a sequence of the words from the vocabulary

● A word can occur several times in a text

– Word Token: each occurrence of words in text

– Word Type: each unique occurrence of words in the text
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Word occurrence

● Example:

– „This is a sample text from a book that is read every day.“
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Word occurrence

● Example:

– „This is a sample text from a book that is read every day.“

● # Word Tokens: 13
● # Word Types: 11
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Counting
● The Brown corpus

– 1,015,945 word tokens

– 47,218 word types

● Google N-Gram corpus

– 1,024,908,267,229 word tokens

– 13,588,391 word types

● Why so many word types?

– Large English dictionaries have around 500k word types
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Counting
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http://weaver.nlplab.org/~brat/demo/latest/#/not-editable/CoNLL-00-Chunking/train.txt-doc-1

Corpora include numbers, mispellings, names, acronyms, etc. 



Word frequency
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Zipf's Law
● The frequency of any word is inversely proportional to its rank 

in the frequency table

● Given a corpus of natural language utterances, the most 
frequent word will occur approximately

– twice as often as the second most frequent word,

– three times as often as the third most frequent word,

– …

● Rank of a word times its frequency is approximately a constant

– Rank · Freq ≈ c

– c ≈ 0.1 for English
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Word frequency
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Word frequency
● Zipf’s Law is not very accurate for very frequent and very 

infrequent words
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Word frequency
● Zipf’s Law is not very accurate for very frequent and very 

infrequent words
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Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● Too many phrases

● Limited text for estimating probabilities

● Simplification assumption
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P (speech∣Computer can recognize )=
#(Computer can recognize speech)

# (Computer can recognize)



Markov assumption
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P (S )= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S )= ∏ P (w i∣wi−1)
n

i−1



Markov assumption
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P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|can)· 
P(speech|recognize)

P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|Computer can)· 
P(speech|Computer can recognize)

P (speech∣recognize )=
#(recognize speech)

# (recognize)



N-gram model

● Unigram

● Bigram

● Trigram

● N-gram
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P (S )= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S )= ∏ P (wi∣wi−1 , w i−2)
n

i−1

P (S )= ∏ P (wi∣wi−1)
n

i−1

P (S )= ∏ P (wi)
n

i−1



N-grams
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Google N-gram corpus
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(https://books.google.com/ngrams)



WebTrigrams

37
(http://www.chrisharrison.net/index.php/Visualizations/WebTrigrams)



Maximum Likelihood Estimation
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● Vocabulary:

– V = {I,saw,the,boy,man,is,working,walked,in,street}

– walked boy working

– The boy is working

– street saw the man
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Maximum Likelihood
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>
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Maximum Likelihood
● <s> I saw the man </s>
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P(S )=P ( I∣< s>)⋅P (saw∣I )⋅P(the∣saw)⋅P (man∣the)

P(S )=
#(< s> I )

# (< s>)
⋅
#( I saw)

#( I )
⋅
#(saw the)
#(saw)

⋅
#(the man)

# (the)
P (S )=

2
3
⋅
1
2
⋅
1
1
⋅
1
3

<s>
3

<s> 2 1



Unkown words
● <s> I saw the woman </s>

● Closed vocabulary: test set can only contain words from this lexicon

● Open vocabulary: test set can contain unknown words

● Out of vocabulary (OOV) words:

– Choose a vocabulary

– Convert unknown (OOV) words to <UNK> word token

– Estimate probabilities for <UNK>

● Alternatively, 

– Replace the first occurrence of every word type in the training data by 
<UNK> 
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Branching Factor
● Branching factor is the number of possible words that can be 

used in each position of a text

– Maximum branching factor for each language is V

– A good language model should be able to

● minimize this number
● give a higher probability to the words that occur in real 

texts
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Branching Factor

● John eats an …

– computer, book, apple, banana, umbrella, orange, desk
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Branching Factor

● John eats an …

– computer, book, apple, banana, umbrella, orange, desk
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Evaluation

● Dividing the corpus to two parts

● Building a language model from the training set

– Word frequencies, etc..

● Estimating the probability of the test set

● Calculate the average branching factor of the test set

46

training test



Perplexity

● Goal: giving higher probability to frequent texts

– minimizing the perplexity of the frequent texts
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P (S )=P (w1 , w2 , ... , w n)

Perplexity (S )=P (w1 , w2 , ... , w n)
−
1
n= n√ 1

P (w1 , w 2 , ... , w n)

Perplexity(S )=
n√ ∏ 1

P (w i∣w1 , w2 , ... , wi−1)i=1

n



Perplexity
● Maximum branching factor for each language is |V|

● Example: predicting next characters instead of next words:

– |V| = 26, five next characters:

48

Perplexity(S )=
n√ ∏ 1

P (w i∣w1 , w2 , ... , wi−1)i=1

n

Perplexity (S )=((
1
26

)
5

)
−
1
5=26



Perplexity

● Wall Street Journal (19,979 word vocabulary)

– Training set: 38 million word tokens

– Test set: 1.5 million words

● Perplexity:

– Unigram: 962

– Bigram: 170

– Trigram: 109

49
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Maximum Likelihood
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● <s> I saw the man </s>
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P (S )=P ( I )⋅P ( saw∣I )⋅P (the∣saw )⋅P (man∣the)

P (S )=
#( I )

# (< s>)
⋅
#( I saw)

# ( I )
⋅
#(saw the)

# (saw)
⋅
# (the man)

# (the)

P (S )=
2
3
⋅
1
2
⋅
1
1
⋅
1
3



Zero probability
● <s> I saw the man in the street </s>
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P (S )=P ( I )⋅P ( saw∣I )⋅P (the∣saw )⋅P (man∣the)⋅P (i n∣man)⋅P (the∣i n)⋅P ( street∣the)

P (S )=
#( I )

#(< s>)
⋅
#( I saw)

#( I )
⋅
#( saw the)

#(saw )
⋅
#(the man)

#(the)
⋅
#(man i n)

#(man)
⋅
#(i n the)

#(i n)
⋅
#(the street )

#( the)

P (S )=
2
3
⋅
1
2
⋅
1
1
⋅
1
3
⋅
0
1
⋅
1
1
⋅
1
3



Zero probability

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● No „man in“ in our corpus
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Smoothing
● Giving a small probability to all as unseen n-grams

– Laplace smoothing

● Add one to all counts (Add-one)

54



Smoothing
● Giving a small probability to all unseen n-grams

– Laplace smoothing

● Add one to all counts (Add-one)
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P (w i∣wi−1)=
#(w i−1 , w i)+1

#(w i−1)+V
P (wi∣w i−1)=

#(w i−1 , wi)

# (wi−1)



Smoothing
● Giving a small probability to all unseen n-grams

– Interpolation and Back-off Smoothing

● Use a background probability

56

P (w i∣wi−1)=
#(w i−1 , w i)

# (wi−1)

P (w i∣w i−1) =

#(wi−1 , w i)

# (w i−1)

P BG

if #(wi−1 , wi)>0

otherwise

Back-off



Smoothing
● Giving a small probability to all as unseen n-grams

– Interpolation and Back-off Smoothing

● Use a background probability

57

P (w i∣wi−1)=
#(w i−1 , w i)

# (wi−1)

Interpolation P (wi∣w i−1)=λ1⋅
#(w i−1 , w i)

# (w i−1)
+λ2⋅P BG ∑ λ=1

Parameter
tuning

Background
probability



Background probability
● Lower levels of n-gram can be used as background probability

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

58

(
1
V

)

P (w i∣wi−1) =

#(wi−1 , wi)

# (wi−1)

α(wi)P (w i)

if #(wi−1 , w i)>0

otherwise

Back-off

P (w i) =

#(wi)

N

α(wi)
1
V

if #(wi)>0

otherwise



Background probability
● Lower levels of n-gram can be used as background probability

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram
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(
1
V

)

P (w i∣wi−1)=λ1⋅
#(w i−1 , wi)

#(wi−1)
+λ2⋅P (wi)Interpolation

P(w i)=λ1⋅
#(w i)

N
+λ2⋅

1
V

P(w i∣wi−1)=λ1⋅
#(w i−1 , wi)

#(wi−1)
+λ2⋅

#(wi)

N
+λ3⋅

1
V



Parameter tuning
● Held-out dataset (development set)

● 80% (training), 10% (dev-set), 10% (test)

● Minimize the perplexity of the held-out dataset

60

training testdev



Advanced smoothing
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P (w i∣wi−1)=
#(w i−1 , wi)+1

#(w i−1)+V

P (w i∣wi−1)=
#(w i−1 , w i)+k

#(w i−1)+kV
(add-k, add-δ smoothing)



Advanced smoothing
● Absolute discounting

– Good estimates for high counts, discount won't affect them 
much

– Lower counts are anyway not trustworthy
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P (w i∣wi−1) =

#(wi−1 , wi)

#(wi−1)

P BG

if #(wi−1 , w i)>0

otherwise

P (w i∣wi−1) =

#(wi−1 , wi)−δ

#(wi−1)

α(wi)⋅P BG (wi)

if #(wi−1 , w i)>0

otherwise



Advanced smoothing

● Estimation based on the lower-order n-gram

– I cannot see without my reading … 

– Going unigram : „Francisco“, „glasses“, ...

● Observations

– „Francisco“ is more common than „glasses“

– But „Francisco“ always follows „San“

– „Francisco“ is not a novel continuation for a text
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Advanced smoothing

● Solution

– Instead of P(w): How likely is „w“ to appear in a text?

– Pcontinuation(w): How likely is „w“ to appear as a novel 
continuation?

– Count the number of words types after which „w“ appears

64

Pcontinuation(w )∝|wi−1 :#(w i−1 , w i)>0|



Advanced smoothing
● How many times does „w“ appear as a novel continuation

● Normalized by the total number of bigram types

● Alternatively: normalized by the number of words preceding all 
words

65

Pcontinuation (w)∝|wi−1: #(wi−1 , w i)>0|

Pcontinuation (w)=
|wi−1 :#(wi−1 , wi)>0|

|(w j−1 , w j):#(w j−1 , w j)>0|

Pcontinuation (w)=
|wi−1 :#(wi−1 , w i)>0|

∑
w'

|(wi−1
' ) :#(wi−1

' , wi
' )>0|



Advanced smoothing
● Kneser-Ney discounting
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P (w i∣wi−1)=
max (#(wi−1 , w i)−δ ,0)

#(w i−1)
+α⋅P BG

P(w i∣wi−1)=
max (#(wi−1 , w i)−δ ,0)

#(w i−1)
+α⋅P continuation



Class-based n-grams

● Compute estimation for the bigram „to Shanghai“

● Training data: „to London“, „to Beijing“, „to Denver“

● Classes: CITY_NAME, AIRLINE, DAY_OF_WEEK, MONTH, etc.
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P (w i∣w i−1)≈P (ci∣ci−1)×P (w i∣ci−1)



Further reading
● Chapter 4

● http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf
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