
Natural Language Processing
SoSe 2015

Language Modelling

Dr. Mariana Neves April 20th, 2015

(based on the slides of Dr. Saeedeh Momtazi)

Outline
● Motivation

● Estimation

● Evaluation

● Smoothing

2

Outline
● Motivation

● Estimation

● Evaluation

● Smoothing

3

Language Modelling

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

4

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...

Language Modelling

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

5

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...

Language Modelling
● Applications

– Word prediction

– Speech recognition

– Handwriting recognition

– Machine translation

– Spell checking

6

Applications

● Word prediction

– „natural language..“

● processing
● management
● orange
● ...

7

Applications

● Speech recognition

– „Computers can
recognize speech.“

– „Computers can wreck a
nice peach.”

8

http://worldsgreatestsmile.com/html/phonological_ambiguity.html

Applications
● Handwriting recognition

9

https://play.google.com/store/apps/details?id=com.metamoji.mazecen

Applications
● Handwriting recognition

– „Take the money and run“, Woody Allen: „I have a gub.”
instead of „I have a gun.“

10

https://www.youtube.com/watch?v=-UHOgkDbVqc

Applications
● Machine translation

– „The cat eats...“

● „Die Katze frisst...“
● „Die Katze isst...“

– Chinese to English:

● „He briefed to reporters on the chief contents of the statements“
● „He briefed reporters on the chief contents of the statements“
● „He briefed to reporters on the main contents of the statements“
● „He briefed reporters on the main contents of the statements“

11

Applications
● Spell checking

– „I want to adver this project“

● „adverb“ (noun)
● „advert“ (verb)

– „They are leaving in about fifteen minuets to go to her house.“

● „minutes“

– „The design an construction of the system will take more than
a year.“

● „and“

12

Outline
● Motivation

● Estimation

● Evaluation

● Smoothing

13

Language Modeling

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

– „Computers can recognize speech.“

● P(Computer, can, recognize, speech)

14

Conditional Probability

15

P (A∣B)=
P (A∩B)

P (A)

P (A , B)=P (A)⋅P (B∣A)

P (A , B ,C , D)=P (A)⋅P (B∣A)⋅P (C∣A ,B)⋅P (D∣A ,B ,C)

Conditional Probability

16

http://setosa.io/conditional/

http://setosa.io/conditional/

Conditional Probability

17

P (S)=P (w1)⋅P (w2∣w1)⋅P (w3∣w1 , w2)... P (w n∣w1 , w2 , , w3 , ... , , wn)

P (S)= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

Corpus

● Probabilities are based on counting things

● A computer-readable collection of text or speech

– The Brown Corpus

● A million-word collection of samples
● 500 written texts from different genres (newspaper,

fiction, non-fiction, academic, ...)
● Assembled at Brown University in 1963-1964

● Can also be used for evaluation and comparison purposes

18

Corpus

19

http://weaver.nlplab.org/~brat/demo/latest/#/not-editable/CoNLL-00-Chunking/train.txt-doc-1

Corpus
● Text Corpora

– Corpus of Contemporary American English

– The British National Corpus

– The International Corpus of English

– The Google N-gram Corpus (
https://books.google.com/ngrams)

– WBI repository (biomedical domain) (
http://corpora.informatik.hu-berlin.de/)

20

https://books.google.com/ngrams
http://corpora.informatik.hu-berlin.de/

Word occurrence

● A language consists of a set of „V“ words (Vocabulary)

● A text is a sequence of the words from the vocabulary

● A word can occur several times in a text

– Word Token: each occurrence of words in text

– Word Type: each unique occurrence of words in the text

21

Word occurrence

● Example:

– „This is a sample text from a book that is read every day.“

22

Word occurrence

● Example:

– „This is a sample text from a book that is read every day.“

● # Word Tokens: 13
● # Word Types: 11

23

Counting
● The Brown corpus

– 1,015,945 word tokens

– 47,218 word types

● Google N-Gram corpus

– 1,024,908,267,229 word tokens

– 13,588,391 word types

● Why so many word types?

– Large English dictionaries have around 500k word types

24

Counting

25

http://weaver.nlplab.org/~brat/demo/latest/#/not-editable/CoNLL-00-Chunking/train.txt-doc-1

Corpora include numbers, mispellings, names, acronyms, etc.

Word frequency

26

Zipf's Law
● The frequency of any word is inversely proportional to its rank

in the frequency table

● Given a corpus of natural language utterances, the most
frequent word will occur approximately

– twice as often as the second most frequent word,

– three times as often as the third most frequent word,

– …

● Rank of a word times its frequency is approximately a constant

– Rank · Freq ≈ c

– c ≈ 0.1 for English

27

Word frequency

28

Word frequency
● Zipf’s Law is not very accurate for very frequent and very

infrequent words

29

Word frequency
● Zipf’s Law is not very accurate for very frequent and very

infrequent words

30

Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● Too many phrases

● Limited text for estimating probabilities

● Simplification assumption

31

P (speech∣Computer can recognize)=
#(Computer can recognize speech)

(Computer can recognize)

Markov assumption

32

P (S)= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S)= ∏ P (w i∣wi−1)
n

i−1

Markov assumption

33

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|can)·
P(speech|recognize)

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

P (speech∣recognize)=
#(recognize speech)

(recognize)

N-gram model

● Unigram

● Bigram

● Trigram

● N-gram

34

P (S)= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S)= ∏ P (wi∣wi−1 , w i−2)
n

i−1

P (S)= ∏ P (wi∣wi−1)
n

i−1

P (S)= ∏ P (wi)
n

i−1

N-grams

35

Google N-gram corpus

36

(https://books.google.com/ngrams)

WebTrigrams

37
(http://www.chrisharrison.net/index.php/Visualizations/WebTrigrams)

Maximum Likelihood Estimation
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● Vocabulary:

– V = {I,saw,the,boy,man,is,working,walked,in,street}

– walked boy working

– The boy is working

– street saw the man

38

Maximum Likelihood
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

39

Maximum Likelihood
● <s> I saw the man </s>

40

P(S)=P (I∣< s>)⋅P (saw∣I)⋅P(the∣saw)⋅P (man∣the)

P(S)=
#(< s> I)

(< s>)
⋅
#(I saw)

#(I)
⋅
#(saw the)
#(saw)

⋅
#(the man)

(the)
P (S)=

2
3
⋅
1
2
⋅
1
1
⋅
1
3

<s>
3

<s> 2 1

Unkown words
● <s> I saw the woman </s>

● Closed vocabulary: test set can only contain words from this lexicon

● Open vocabulary: test set can contain unknown words

● Out of vocabulary (OOV) words:

– Choose a vocabulary

– Convert unknown (OOV) words to <UNK> word token

– Estimate probabilities for <UNK>

● Alternatively,

– Replace the first occurrence of every word type in the training data by
<UNK>

41

Outline
● Motivation

● Estimation

● Evaluation

● Smoothing

42

Branching Factor
● Branching factor is the number of possible words that can be

used in each position of a text

– Maximum branching factor for each language is V

– A good language model should be able to

● minimize this number
● give a higher probability to the words that occur in real

texts

43

Branching Factor

● John eats an …

– computer, book, apple, banana, umbrella, orange, desk

44

Branching Factor

● John eats an …

– computer, book, apple, banana, umbrella, orange, desk

45

Evaluation

● Dividing the corpus to two parts

● Building a language model from the training set

– Word frequencies, etc..

● Estimating the probability of the test set

● Calculate the average branching factor of the test set

46

training test

Perplexity

● Goal: giving higher probability to frequent texts

– minimizing the perplexity of the frequent texts

47

P (S)=P (w1 , w2 , ... , w n)

Perplexity (S)=P (w1 , w2 , ... , w n)
−
1
n= n√ 1

P (w1 , w 2 , ... , w n)

Perplexity(S)=
n√ ∏ 1

P (w i∣w1 , w2 , ... , wi−1)i=1

n

Perplexity
● Maximum branching factor for each language is |V|

● Example: predicting next characters instead of next words:

– |V| = 26, five next characters:

48

Perplexity(S)=
n√ ∏ 1

P (w i∣w1 , w2 , ... , wi−1)i=1

n

Perplexity (S)=((
1
26

)
5

)
−
1
5=26

Perplexity

● Wall Street Journal (19,979 word vocabulary)

– Training set: 38 million word tokens

– Test set: 1.5 million words

● Perplexity:

– Unigram: 962

– Bigram: 170

– Trigram: 109

49

Outline
● Motivation

● Estimation

● Evaluation

● Smoothing

50

Maximum Likelihood
● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● <s> I saw the man </s>

51

P (S)=P (I)⋅P (saw∣I)⋅P (the∣saw)⋅P (man∣the)

P (S)=
#(I)

(< s>)
⋅
#(I saw)

(I)
⋅
#(saw the)

(saw)
⋅
(the man)

(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3

Zero probability
● <s> I saw the man in the street </s>

52

P (S)=P (I)⋅P (saw∣I)⋅P (the∣saw)⋅P (man∣the)⋅P (i n∣man)⋅P (the∣i n)⋅P (street∣the)

P (S)=
#(I)

#(< s>)
⋅
#(I saw)

#(I)
⋅
#(saw the)

#(saw)
⋅
#(the man)

#(the)
⋅
#(man i n)

#(man)
⋅
#(i n the)

#(i n)
⋅
#(the street)

#(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3
⋅
0
1
⋅
1
1
⋅
1
3

Zero probability

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● No „man in“ in our corpus

53

Smoothing
● Giving a small probability to all as unseen n-grams

– Laplace smoothing

● Add one to all counts (Add-one)

54

Smoothing
● Giving a small probability to all unseen n-grams

– Laplace smoothing

● Add one to all counts (Add-one)

55

P (w i∣wi−1)=
#(w i−1 , w i)+1

#(w i−1)+V
P (wi∣w i−1)=

#(w i−1 , wi)

(wi−1)

Smoothing
● Giving a small probability to all unseen n-grams

– Interpolation and Back-off Smoothing

● Use a background probability

56

P (w i∣wi−1)=
#(w i−1 , w i)

(wi−1)

P (w i∣w i−1) =

#(wi−1 , w i)

(w i−1)

P BG

if #(wi−1 , wi)>0

otherwise

Back-off

Smoothing
● Giving a small probability to all as unseen n-grams

– Interpolation and Back-off Smoothing

● Use a background probability

57

P (w i∣wi−1)=
#(w i−1 , w i)

(wi−1)

Interpolation P (wi∣w i−1)=λ1⋅
#(w i−1 , w i)

(w i−1)
+λ2⋅P BG ∑ λ=1

Parameter
tuning

Background
probability

Background probability
● Lower levels of n-gram can be used as background probability

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

58

(
1
V

)

P (w i∣wi−1) =

#(wi−1 , wi)

(wi−1)

α(wi)P (w i)

if #(wi−1 , w i)>0

otherwise

Back-off

P (w i) =

#(wi)

N

α(wi)
1
V

if #(wi)>0

otherwise

Background probability
● Lower levels of n-gram can be used as background probability

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

59

(
1
V

)

P (w i∣wi−1)=λ1⋅
#(w i−1 , wi)

#(wi−1)
+λ2⋅P (wi)Interpolation

P(w i)=λ1⋅
#(w i)

N
+λ2⋅

1
V

P(w i∣wi−1)=λ1⋅
#(w i−1 , wi)

#(wi−1)
+λ2⋅

#(wi)

N
+λ3⋅

1
V

Parameter tuning
● Held-out dataset (development set)

● 80% (training), 10% (dev-set), 10% (test)

● Minimize the perplexity of the held-out dataset

60

training testdev

Advanced smoothing

61

P (w i∣wi−1)=
#(w i−1 , wi)+1

#(w i−1)+V

P (w i∣wi−1)=
#(w i−1 , w i)+k

#(w i−1)+kV
(add-k, add-δ smoothing)

Advanced smoothing
● Absolute discounting

– Good estimates for high counts, discount won't affect them
much

– Lower counts are anyway not trustworthy

62

P (w i∣wi−1) =

#(wi−1 , wi)

#(wi−1)

P BG

if #(wi−1 , w i)>0

otherwise

P (w i∣wi−1) =

#(wi−1 , wi)−δ

#(wi−1)

α(wi)⋅P BG (wi)

if #(wi−1 , w i)>0

otherwise

Advanced smoothing

● Estimation based on the lower-order n-gram

– I cannot see without my reading …

– Going unigram : „Francisco“, „glasses“, ...

● Observations

– „Francisco“ is more common than „glasses“

– But „Francisco“ always follows „San“

– „Francisco“ is not a novel continuation for a text

63

Advanced smoothing

● Solution

– Instead of P(w): How likely is „w“ to appear in a text?

– Pcontinuation(w): How likely is „w“ to appear as a novel
continuation?

– Count the number of words types after which „w“ appears

64

Pcontinuation(w)∝|wi−1 :#(w i−1 , w i)>0|

Advanced smoothing
● How many times does „w“ appear as a novel continuation

● Normalized by the total number of bigram types

● Alternatively: normalized by the number of words preceding all
words

65

Pcontinuation (w)∝|wi−1: #(wi−1 , w i)>0|

Pcontinuation (w)=
|wi−1 :#(wi−1 , wi)>0|

|(w j−1 , w j):#(w j−1 , w j)>0|

Pcontinuation (w)=
|wi−1 :#(wi−1 , w i)>0|

∑
w'

|(wi−1
') :#(wi−1

' , wi
')>0|

Advanced smoothing
● Kneser-Ney discounting

66

P (w i∣wi−1)=
max (#(wi−1 , w i)−δ ,0)

#(w i−1)
+α⋅P BG

P(w i∣wi−1)=
max (#(wi−1 , w i)−δ ,0)

#(w i−1)
+α⋅P continuation

Class-based n-grams

● Compute estimation for the bigram „to Shanghai“

● Training data: „to London“, „to Beijing“, „to Denver“

● Classes: CITY_NAME, AIRLINE, DAY_OF_WEEK, MONTH, etc.

67

P (w i∣w i−1)≈P (ci∣ci−1)×P (w i∣ci−1)

Further reading
● Chapter 4

● http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf

68

