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Spam Mail Detection
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Email Foldering
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News Classification

6



Language Identification
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Sentiment Analysis
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Variations

Binary                                   vs.                  Multiclass
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Variations

   Flat                                     vs.                    Hierarchical
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(https://www.nlm.nih.gov/cgi/mesh/2015/MB_cgi)



Variations

Hard                                vs.                      Soft (Multi-label)
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Supervised Categorization

● Using a training set of m manually labeled documents

– d1  c→ 1

– d2  c→ 2

– ...

– dm  c→ m
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Supervised Categorization

● Applying any kinds of classifiers

– K Nearest Neighbor

– Support Vector Machines

– Naïve Bayes

– Maximum Entropy

– Logistic Regression

– ...
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Naïve Bayes

● Selecting the class with highest probability

 ⇒ Minimizing the number of items with wrong labels
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ĉ=argmax ci P (c i∣d )

ĉ=argmax ci
P (d∣ci)⋅P (ci)

P (d )

ĉ≈argmax ci P (d∣c i)⋅P (ci)



Naïve Bayes
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ĉ≈argmax ci P (d∣c i)⋅P (ci)

Likelihood probability

Prior probability



Prior Probability

● How much the class ci is important disregarding the 
document?
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P (ci)

P (ci)=
#(ci)

N



Likelihood Probability

How likely the document d is selected, if we know ci is the 
correct class?

 ⇒ How likely each of the words from document d will be 
selected if we know ci is the correct class?
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P (d∣ci)= ∏w∈d
P (w∣c i)

P (d∣ci)

P (w∣c i)=
#(w ,ci)

∑w '
#(w ' , ci)
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Smoothing

● Shortcomings

– Words that are not available in the training data produce zero 
probability

– Even one zero probability makes the whole result zero

● Solution

– Using a smoothing method to avoid zero probability
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P (d∣ci)= ∏w∈d
P (w∣c i)

P (w∣c i)=
#(w ,ci)

∑w '
#(w ' , ci)



Smoothing

● Laplace (add-one) smoothing
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P (d∣ci)= ∏w∈d
P (w∣c i)

P (w∣c i)=
#(w ,ci)

∑w '
#(w ' , ci)

P (w∣c i)=
#(w ,ci)+1

∑w '
#(w ' , ci)+∣V∣



Smoothing

● Advanced smoothing methods

– Bayesian smoothing with Dirichlet prior

– Absolute discounting

– Kneser-Ney smoothing
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P (d∣ci)= ∏w∈d
P (w∣c i)

P (w∣c i)=
#(w ,ci)

∑w '
#(w ' , ci)
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Naïve Bayes Classifier

● Using words of a document as a bag-of-word model

● Similar to the unigram model in language modeling
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P (d∣ci)= ∏w∈d
P (w∣c i)



Naïve Bayes Classifier

● Shortcoming

– Considering no dependencies between words

● Solution

– Using higher order n-grams

26

P (d∣ci)= ∏w∈d
P (w∣c i)



Naïve Bayes Classifier

● Unigram
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P (d∣ci)= ∏j=1

n
P (w j∣c i)

P (w∣c i)=
#(w j , c i)

∑w '
#(w ' , ci)



Naïve Bayes Classifier

● Bigram
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P (d∣ci)= ∏j=1

n
P (w j∣w j−1 , c i)

P (w j∣w j−1 , c i)=
#(w j−1w j , c i)

#(w j−1 , c i)



Naïve Bayes Classifier

● Trigram
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P (d∣ci)= ∏j=1

n
P (w j∣w j−2w j−1 , ci)

P (w j∣w j−2w j−1 , c i)=
#(w j−2w j−1w j , ci)

#(w j−2w j−1 , ci)
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Precision and Recall
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Real



Precision and Recall

32

Real Labeled



Precision and Recall
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fn fptp

tn



Precision and Recall

● Precision:

– Amount of labeled items which are correct

● Recall:

– Amount of correct items which have been labeled
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Precision=
tp

tp+ fp

Recall=
tp

tp+ fn



Precision and Recall

● There is a strong anti-correlation between precision and recall

● Having a trade off between these two metrics

● Using F-measure to consider both metrics together

● F -measure is a weighted harmonic mean of precision and 
recall
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F=
(β

2
+1)P R

β
2P+R



Precision and Recall

● β < 1 gives a higher priority to precision

● β > 1 gives higher priority to recall

● β = 1 gives the same priority to both precision and recall
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F 1=
2 P R
P+R


