
Natural Language Processing

SoSe 2017

Morphological Parsing

Dr. Mariana Neves May 8th, 2017

Morphological parsing

● Breaking down words into components and building a
structured representation.

– English:

● cats  cat +N +Pl

● caught  catch +V +Past

– Spanish:

● vino (came)  venir +V + Perf +3P + Sg

● vino (wine)  vino +N + Masc + Sg

2

Morphological parsing

● Exercise: Give an example of an ambigous word in German and
 parse two of its meanings into parts.

3

Morphological parsing

● Exercise: Think of one example of an ambiguous word in
German and parse two of its meanings.

– Weiß:

● weiß (white)  white + Adj
● weiß (know)  to know +V + Present +1P/3P + Sg

4

Morphological parsing

● Surface segmentation: sequence of substrings whose
concatenation is the entire word

– achievability  achiev + abil + ity

● Canonical segmentation: sequence of standardized segments

– achievability  achieve + able + ity

5

Stemming vs. Lemmatization

● Stemming: stripping off word endings (rule-based)

– foxes  fox

– going  go

● Lemmatization: mapping the word to its lemma (lexicon-based)

– sang, sung  sing

– going, went, goes  go

6

Motivation for morphological parsing

● Information retrieval

– Normalize verb tenses, plurals, grammar cases

● Machine translation

– Translation based on the stem

7

Morphological parsing

● Resources

– Lexicon

● List of all stems and affixes

– Morphotactics

– Ortographic rules

8

Morphological parsing

● Resources

– Lexicon

– Morphotactics

● A model of morpheme ordering in a word
● e.g., plurals are suffixes in English

– Ortographic rules

9

Morphological parsing

● Resources

– Lexicon

– Morphotactics

– Ortographic rules

● Rules for changing in the words when combining
morphemes

● e.g., city  cities

10

Finite-state automata (FSA)

● FSAs are composed of

– Vertices (nodes)

– Arcs (links)

11

q
0

q
1

q
2

q
3

q
4

b a a !

a

string?

Finite-state automata (FSA)

● FSAs are composed of

– Vertices (nodes)

– Arcs (links)

12

q
0

q
1

q
2

q
3

q
4

b a a !

a

baa!
baaa!

baaaa!
…

/baa+!/

Finite-state lexicon

● Finite state automata (FSA) for English nominal inflection
(same word category)

13

q
0

q
1

q
2

reg-noun
(cat,dog,house)

plural -s
(cats,dogs,houses)

irreg-sg-noun
(goose,mouse,fish)

irreg-pl-noun
(geese,mice)

(Check example for verbal inflections in Jurafski & Martin book.)

Finite-state lexicon

● FSA for derivational morphology (distinct word categories)

14

q
0

q
1

q
2

un- adj-root

q
2

-er -est -ly

ɛ

Adjectives:
- cool-er
- small-er
- un-usual-ly
...

Finite-state lexicon

● Exercise: Is it possible to create adjectives that do not exist?

15

q
0

q
1

q
2

un- adj-root

q
2

-er -est -ly

ɛ

Finite-state lexicon

● Exercise: Is it possible to create adjectives that do not exist?

16

q
0

q
1

q
2

un- adj-root

q
2

-er -est -ly

ɛ

Incorrect adjectives:
- un-small-er
- orange-er
- small-ly

Solution: classes of roots (adj-root
1
, adj-root

2
, etc.)

Finite-state transducers (FST)

● FST is a type of FSA which maps between two sets of symbols.

● It is a two-tape automaton that recognizes or generates pairs
of strings, one from each type.

● FST defines relations between sets of strings.

17

q
0

q
1

a:ba

b:b

b:a

b:εaa:b

Finite-state transducers for NLP

● FST as recognizer

– Takes a pair of strings and accepts or rejects them

● FST as generator

– Outputs a pair of strings for a language

● FST as translator

– Reads a string and outputs another string

– Morphological parsing: letters (input); morphemes (output)

● FST as relater

– Computes relations between sets

18

FST for morphological parsing

● Two tapes

– Upper (lexical) tape: input alphabet Σ

● cat +N +Pl

– Lower (surface) tape: output alphabet Δ

● cats

19

FST for morphological parsing

● goose/geese: g:g o:e o:e s:s e:e

– Feasible pairs (e.g., o:e) vs. default pairs (g:g)

20

1 2

0
3 4 5 6

7

f f

o
o

x
x

+N
ε

a
a

t
t

+Pl
^s#

+Sg
#

+Sg
#

+Pl
#

+N
ε

+N
ε

c
c

g
g o

o
o
o

s
s

e
e

o
e o

e
s
s

e
e

FST and ortographical rules

● Plural of „fox“ is „foxes“ not „foxs“

● Consonant double: beg/begging

● E deletion: make/making

● E insertion: watch/watches

● Y replacement: try/tries

● K insertion: panic/panicked

21

FST and ortographical rules

● Lexical: foxes +N +Pl

● Intermediate: fox^s#

● Surface: foxes

22

q
0

^:ε
other

#

q
1

q
2

q
3

q
4

q
5

s

#

ε:e

^:ε
s

other

z,s,x

z,s,x

#,other

^:ε

z,x#,other

Combination of FST lexicon and rules for
generation

23

Lexical

Intermediate

Surface

fox +N +Pl

fox^s#

foxes

LEXICON-FST

FST
1
...FST

n
(ortographical rules)

FST lexicon and rules

● Disambiguation

– For some cases, it requires external evidences:

● I saw two foxes yesterday. (fox +N +Pl)
● That trickster foxes me every time! (fox +V +3SG)

– But it can handle local ambiguity (intersection & composition)

– „asses“ vs. „assess“

24

FST lexicon and rules

● Intersection & Composition

25

Lexicon-FST

FST
1
 … FST

n

Lexicon-FST

FST
A
 (=FST

1
 … FST

n
)

Lexicon-FST
•

FST
A

intersect

compose

Porter Stemmer (Lexicon-Free FST)

● Popular for information retrieval and text categorization tasks

● It is based on a series of simple cascade rules

– ATIONAL  ATE (relational  relate)

– ING  ε (motoring  motor)

– SSES  SS (grasses  grass)

● But it commits many errors:

– ORGANIZATION  ORGAN

– DOING  DOE

26

(http://tartarus.org/martin/PorterStemmer/)

WordNet lemmatizer

● Uses WordNet to find the
stem of a word.

27

(https://wordnet.princeton.edu/
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm)

Use case:
BioLemmatizer

● Based on MorphAdorner

● Enriched with biomedical-
specific resources (lexicon)

28

Machine learning-based morphological parsing

● Based on available training data, e.g., from the Morpho
Challenge

29
(http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml)

Conditional random fields (CRF)

● A discriminative undirected probabilistic graphical model for
structured prediction

30

(http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf)

Conditional random fields (CRF)

● Morphology parsing as a classification task

● Linear-chain CRF is to exploit the dependencies between the
output variables using a chain structured undirected graph

31
(http://www.aclweb.org/anthology/W13-3504)

Conditional random fields (CRF)

● Features:

– Left and right substrings, e.g., {v, iv, riv, driv, <w>driv}
and {e, er, ers, ers</w>} for „driver“

– Rules, such as the following for -ed words („talked“,
„played“ and „speed“):

● position t is a segment boundary if its right context is
ed and the left context is not spe.

32
(http://www.aclweb.org/anthology/W13-3504)

Recurrent neural networks language model (RNNLM)

● Recurrent neural networks (RNN) is a class of NN in which
connections between the units form a directed cycle.

● It makes use of sequential information.

● It does not assume independence between input and output.

33

(http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)

Long short-term memory (LSTM)

● It is a special kind of RNN that connects previous information to the
present task.

● It is capable to learn long-term dependencies and is suitable for
sequence learning tasks.

34 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Long short-term memory (LSTM)

● LSTMs usually have four interating layers (but there are many
variations of the architecture).

35 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM for morphological segmentation

● Instead of relying heavily on linguistic knowledge (e.g., CRFs),
the NN automatically learns the structure of input sequences
and predict morphological boundaries for words.

● Series of window-based LSTM architectures for morphological
segmentation.

● Predictions based on both past and future inputs, i.e., left and
right neighbors.

● Classification task based on {B,M,E,S} classes:

36

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

LSTM for morphological segmentation

37

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● Simple Window LSTM
model considers a new
character window and
label independently at
each step.

LSTM for morphological segmentation

38

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● Multi-Window
LSTM model
processes an
entire word
jointly.

LSTM for morphological segmentation

39

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● The model first makes a
forward pass to process the
sequence in the normal
order.

● Then adopts an additional
backward pass to process
it in reverse order.

● With these bidirectional
passes, the network is able
to learn even more fine-
grained features from the
input words and
corresponding label
sequences.

Summary

● Morphological parsing

● Methods:

– Finite-state autonoma & lexicon

– Finte-state transistors

– Machine learning

● Training data & features
● Sequential algorithms, e.g., CRFs and RNN-LSTM

40

Exercise

● Project:

– Could morphological parsing support your project?

– Choose a morphological parser and try it in your document
collection. Manually check a sample of the results.

41

Tools

● FS-based morpha: https://github.com/knowitall/morpha

● WordNet lemmatizer:
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordN
et/stem.pm

● MorphAdoner: http://morphadorner.northwestern.edu/morphadorner/

● CLEAR parser: https://code.google.com/archive/p/clearparser/

● BioLemmatizer: http://biolemmatizer.sourceforge.net/

● NLP DotNet (on-line): http://nlpdotnet.com/services/Morphparser.aspx

● Morphisto (German): https://code.google.com/archive/p/morphisto/

42

https://github.com/knowitall/morpha
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm
http://morphadorner.northwestern.edu/morphadorner/
https://code.google.com/archive/p/clearparser/
http://biolemmatizer.sourceforge.net/
http://nlpdotnet.com/services/Morphparser.aspx
https://code.google.com/archive/p/morphisto/

Further reading

● NLP book: Chapter 3

● DL book: Chapter 10

– http://www.deeplearningbook.org/contents/rnn.html

● Other references:

– BioLemmatizer (good overview of various lemmatizers):
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/

– morpha: http://dl.acm.org/citation.cfm?id=973922

43

http://www.deeplearningbook.org/contents/rnn.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/
http://dl.acm.org/citation.cfm?id=973922

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

