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Morphological parsing

● Breaking down words into components and building a 
structured representation.

– English:

● cats  cat +N +Pl

● caught  catch +V +Past

– Spanish:

● vino (came)  venir +V + Perf +3P + Sg

● vino (wine)  vino +N + Masc + Sg
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Morphological parsing

● Exercise: Give an example of an ambigous word in German and 
 parse two of its meanings into parts.
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Morphological parsing

● Exercise: Think of one example of an ambiguous word in 
German and  parse two of its meanings.

– Weiß:

● weiß (white)  white + Adj
● weiß (know)  to know +V + Present +1P/3P + Sg
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Morphological parsing

● Surface segmentation: sequence of substrings whose 
concatenation is the entire word

– achievability  achiev + abil + ity

● Canonical segmentation: sequence of standardized segments

– achievability  achieve + able + ity
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Stemming vs. Lemmatization

● Stemming: stripping off word endings (rule-based)

– foxes  fox

– going  go

● Lemmatization: mapping the word to its lemma (lexicon-based)

– sang, sung  sing

– going, went, goes  go
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Motivation for morphological parsing

● Information retrieval

– Normalize verb tenses, plurals, grammar cases

● Machine translation

– Translation based on the stem
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Morphological parsing

● Resources

– Lexicon

● List of all stems and affixes

– Morphotactics

– Ortographic rules
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Morphological parsing

● Resources

– Lexicon

– Morphotactics

● A model of morpheme ordering in a word
● e.g., plurals are suffixes in English

– Ortographic rules
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Morphological parsing

● Resources

– Lexicon

– Morphotactics

– Ortographic rules

● Rules for changing in the words when combining 
morphemes

● e.g., city  cities
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Finite-state automata (FSA)

● FSAs are composed of 

– Vertices (nodes)

– Arcs (links)
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Finite-state automata (FSA)

● FSAs are composed of 

– Vertices (nodes)

– Arcs (links)
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Finite-state lexicon

● Finite state automata (FSA) for English nominal inflection 
(same word category)
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Finite-state lexicon

● FSA for derivational morphology (distinct word categories)

14

q
0

q
1

q
2

un- adj-root

q
2

-er -est -ly

ɛ

Adjectives:
- cool-er
- small-er
- un-usual-ly
...



Finite-state lexicon

● Exercise: Is it possible to create adjectives that do not exist?
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Finite-state lexicon

● Exercise: Is it possible to create adjectives that do not exist?
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Finite-state transducers (FST)

● FST is a type of FSA which maps between two sets of symbols.

● It is a two-tape automaton that recognizes or generates pairs 
of strings, one from each type.

● FST defines relations between sets of strings.
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Finite-state transducers for NLP

● FST as recognizer

– Takes a pair of strings and accepts or rejects them

● FST as generator

– Outputs a pair of strings for a language

● FST as translator

– Reads a string and outputs another string

– Morphological parsing: letters (input); morphemes (output)

● FST as relater

– Computes relations between sets
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FST for morphological parsing

● Two tapes

– Upper (lexical) tape: input alphabet Σ

● cat +N +Pl

– Lower (surface) tape: output alphabet Δ

● cats
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FST for morphological parsing

● goose/geese: g:g o:e o:e s:s e:e

– Feasible pairs (e.g., o:e) vs. default pairs (g:g)
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FST and ortographical rules

● Plural of „fox“ is „foxes“ not „foxs“

● Consonant double: beg/begging

● E deletion: make/making

● E insertion: watch/watches

● Y replacement: try/tries

● K insertion: panic/panicked
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FST and ortographical rules

● Lexical: foxes +N +Pl

● Intermediate: fox^s#

● Surface: foxes
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Combination of FST lexicon and rules for 
generation
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FST lexicon and rules

● Disambiguation 

– For some cases, it requires external evidences:

● I saw two foxes yesterday. (fox +N +Pl)
● That trickster foxes me every time! (fox +V +3SG)

– But it can handle local ambiguity (intersection & composition)

– „asses“ vs. „assess“
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FST lexicon and rules

● Intersection & Composition
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Porter Stemmer (Lexicon-Free FST)

● Popular for information retrieval and text categorization tasks

● It is based on a series of simple cascade rules

– ATIONAL  ATE (relational  relate)

– ING  ε (motoring  motor)

– SSES  SS (grasses  grass)

● But it commits many errors:

– ORGANIZATION  ORGAN

– DOING  DOE
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(http://tartarus.org/martin/PorterStemmer/)



WordNet lemmatizer

● Uses WordNet to find the 
stem of a word.
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(https://wordnet.princeton.edu/
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm)



Use case: 
BioLemmatizer

● Based on MorphAdorner

● Enriched with biomedical-
specific resources (lexicon)
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Machine learning-based morphological parsing

● Based on available training data, e.g., from the Morpho 
Challenge
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(http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml)



Conditional random fields (CRF)

● A discriminative undirected probabilistic graphical model for 
structured prediction
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(http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf)



Conditional random fields (CRF)

● Morphology parsing as a classification task

● Linear-chain CRF is to exploit the dependencies between the 
output variables using a chain structured undirected graph
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(http://www.aclweb.org/anthology/W13-3504)



Conditional random fields (CRF)

● Features:

– Left and right substrings, e.g., {v, iv, riv, driv, <w>driv} 
and {e, er, ers, ers</w>} for „driver“

– Rules, such as the following for -ed words („talked“, 
„played“ and „speed“):

● position t is a segment boundary if its right context is 
ed and the left context is not spe.
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(http://www.aclweb.org/anthology/W13-3504)



Recurrent neural networks language model (RNNLM)

● Recurrent neural networks (RNN) is a class of NN in which 
connections between the units form a directed cycle.

● It makes use of sequential information.

● It does not assume independence between input and output.
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(http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)



Long short-term memory (LSTM)

● It is a special kind of RNN that connects previous information to the 
present task.

● It is capable to learn long-term dependencies and is suitable for 
sequence learning tasks.

34 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Long short-term memory (LSTM)

● LSTMs usually have four interating layers (but there are many 
variations of the architecture).

35 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM for morphological segmentation

● Instead of relying heavily on linguistic knowledge (e.g., CRFs), 
the NN automatically learns the structure of input sequences 
and predict morphological boundaries for words.

● Series of window-based LSTM architectures for morphological 
segmentation.

● Predictions based on both past and future inputs, i.e., left and 
right neighbors.

● Classification task based on {B,M,E,S} classes:
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(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)



LSTM for morphological segmentation
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(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● Simple Window LSTM 
model considers a new 
character window and 
label independently at 
each step.



LSTM for morphological segmentation
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(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● Multi-Window 
LSTM model 
processes an 
entire word 
jointly.



LSTM for morphological segmentation
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(http://iiis.tsinghua.edu.cn/~weblt/papers/window-lstm-morph-segmentation.pdf)

● The model first makes a 
forward pass to process the 
sequence in the normal 
order.

● Then adopts an additional 
backward pass to process 
it in reverse order.

● With these bidirectional 
passes, the network is able 
to learn even more fine-
grained features from the 
input words and 
corresponding label 
sequences.



Summary

● Morphological parsing

● Methods:

– Finite-state autonoma & lexicon

– Finte-state transistors

– Machine learning

● Training data & features
● Sequential algorithms, e.g., CRFs and RNN-LSTM
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Exercise

● Project: 

– Could morphological parsing support your project?

– Choose a morphological parser and try it in your document 
collection. Manually check a sample of the results.
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Tools

● FS-based morpha: https://github.com/knowitall/morpha

● WordNet lemmatizer: 
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordN
et/stem.pm

● MorphAdoner: http://morphadorner.northwestern.edu/morphadorner/

● CLEAR parser: https://code.google.com/archive/p/clearparser/

● BioLemmatizer: http://biolemmatizer.sourceforge.net/

● NLP DotNet (on-line): http://nlpdotnet.com/services/Morphparser.aspx

● Morphisto (German): https://code.google.com/archive/p/morphisto/
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Further reading

● NLP book: Chapter 3

● DL book: Chapter 10

– http://www.deeplearningbook.org/contents/rnn.html

● Other references:

– BioLemmatizer (good overview of various lemmatizers): 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/

– morpha: http://dl.acm.org/citation.cfm?id=973922
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http://www.deeplearningbook.org/contents/rnn.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/
http://dl.acm.org/citation.cfm?id=973922
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