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Morphological parsing

 Breaking down words into components and building a
structured representation.

- English:
« cats 2 cat +N +PI
e caught - catch +V +Past

- Spanish:
e vino (came) > venir +V + Perf +3P + Sg
e vino (wine) =2 vino +N + Masc + Sg



Hasso
Plattner
Institut

Morphological parsing

* Exercise: Give an example of an ambigous word in German and
parse two of its meanings into parts.
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Morphological parsing

* Exercise: Think of one example of an ambiguous word in
German and parse two of its meanings.

- Weils:
* weils (white) > white + Adj
 weils (know) > to know +V + Present +1P/3P + Sg
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Morphological parsing

* Surface segmentation: sequence of substrings whose
concatenation is the entire word

- achievability - achiev + abil + ity

* Canonical segmentation: sequence of standardized segments

- achievability - achieve + able + ity



Hasso
Plattner
Institut

Stemming vs. Lemmatization

* Stemming: stripping off word endings (rule-based)

- foxes = fox

- going = go

 Lemmatization: mapping the word to its lemma (lexicon-based)
- sang, sung - sing

- going, went, goes = go
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Motivation for morphological parsing

* Information retrieval

- Normalize verb tenses, plurals, grammar cases

* Machine translation

- Translation based on the stem
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Morphological parsing

e Resources

- Lexicon

 List of all stems and affixes
- Morphotactics

- Ortographic rules
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Morphological parsing

e Resources

- Lexicon
- Morphotactics

* A model of morpheme ordering in a word
* e.g., plurals are suffixes in English
- Ortographic rules
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Morphological parsing

e Resources

- Lexicon
- Morphotactics
- Ortographic rules

* Rules for changing in the words when combining
morphemes

* e.g., city - cities
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Finite-state automata (FSA)

* FSAs are composed of

- Vertices (nodes)
- Arcs (links)
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Finite-state automata (FSA)

« FSAs are composed of

- Vertices (nodes)
- Arcs (links)
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Finite-state lexicon

* Finite state automata (FSA) for English nominal inflection
(same word category)

irreg-pl-noun
(geese,mice)

irreg-sg-noun
(goose,mouse,fish)

\ g o > | q, > | q,
AN v reg _ n 0 u n \ - ,,/ p I u ral _S AN J
(cat,dog,house) (cats,dogs,houses)

(Check example for verbal inflections in Jurafski & Martin book.)
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Finite-state lexicon

 FSA for derivational morphology (distinct word categories)

€
Adjectives:
- cool-er
- small-er

- un-usual-ly
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Finite-state lexicon

« Exercise: Is it possible to create adjectives that do not exist?

&
u n_ AN - o adj_root AN - e -er _est _Iy
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Finite-state lexicon

« Exercise: Is it possible to create adjectives that do not exist?

‘CIOE qui qui quzyi‘

un- ~ adjroot  -er-est-ly

Incorrect adjectives:
- un-small-er

- orange-er

- small-ly

Solution: classes of roots (adj-root , adj-root , etc.)
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Finite-state transducers (FST)

« FST is a type of FSA which maps between two sets of symbols.

« |tis a two-tape automaton that recognizes or generates pairs
of strings, one from each type.

« FST defines relations between sets of strings.

aa:b :
a
4 b:b
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Finite-state transducers for NLP

« FST as recognizer

- Takes a pair of strings and accepts or rejects them
« FST as generator

- Outputs a pair of strings for a language
« FST as translator

- Reads a string and outputs another string

- Morphological parsing: letters (input); morphemes (output)
 FST as relater

- Computes relations between sets
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FST for morphological parsing

* ‘Two tapes
- Upper (lexical) tape: input alphabet 2

 cat +N +Pl
- Lower (surface) tape: output alphabet A

e cats
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FST for morphological parsing

* goose/geese: g:g 0:e 0:e S:S e:e

- Feasible pairs (e.qg., o:e) vs. default pairs (g:g)
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FST and ortographical rules

Plural of ,,fox" is ,,foxes” not ,foxs“

Consonant double: beg/begging
E deletion: make/making

E insertion: watch/watches

Y replacement: try/tries

K insertion: panic/panicked
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FST and ortographical rules

« Lexical: foxes +N +PI
* Intermediate: fox"s#

 Surface: foxes

NE other

#.other
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Combination of FST lexicon and rules for
generation

Lexical > fox +N +Pl

:

LEXICON-FST

Intermediate > fox/\s#

Surface » foxes

(ortographical rules)
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FST lexicon and rules

« Disambiguation

- For some cases, it requires external evidences:

* | saw two foxes yesterday. (fox +N +PlI)
« That trickster foxes me every time! (fox +V +35G)

- But it can handle local ambiguity (intersection & composition)

- ,,asses” vs. ,,assess”
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FST lexicon and rules

* Intersection & Composition

i) i) . i)
Lexicon-FST Lexicon-FST
ik L ~ Lexicon-FST
-~ compose .
T T - v FST
\\\ A
FST, ... FST } intersect  FST, (=FST, ... FST)
1L . Il ’ L
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Porter Stemmer (Lexicon-Free FST)

« Popular for information retrieval and text categorization tasks
« |t is based on a series of simple cascade rules

- ATIONAL -> ATE (relational - relate)

- ING =2 € (motoring - motor)

- SSES - SS (grasses - grass)
« But it commits many errors:

- ORGANIZATION > ORGAN

- DOING > DOE

(http://tartarus.org/martin/PorterStemmer/)



WordNet lemmatizer

e Uses WordNet to find the
stem of a word. :
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WordNet

A lexical database for English

(n) small (the slender part of the back)
S: (n) small (a garment size for a small person)

Adjective

S: (adj) small, little (limited or below average in number or quantity or magnitude or
extent) "a little dining room”; "a little house”; "a small car”; "a little (or small) group”
S: (adj) minor, modest, small, small-scale, pockei-size, pocket-sized (relatively
moderate, limited, or small) "a small business"; "a newspaper with a modest
circulation"; "small-scale plans"; "a pocket-size country"

S: (adj) little, small ((of children and animals) young, immature) "what a big little boy
you are"; "small children"

S: (adj) small (slight or limited; especially in degree or intensity or scope) "a series
of death struggles with small time in between”

S: (adj) humble, low, lowly, modest, small (low or inferior in station or quality) "a

.o

humble cottage"; "a lowly parish priest"; "a modest man of the people”; "small
beginnings"

S: (adj) little, minuscule, small (lowercase) "little a"; "small a"; "e.e.cummings's
poetry is written all in minuscule letters”

S: (adj) little, small ((of a voice) faint) "a little voice"; "a still small voice”

S: (adj) small (have fine or very small constituent particles) "a small misty rain”

S: (adj) modest, small (not large but sufficient in size or amount) "a modest salary”;
"modest inflation"; "helped in my own small way"

S: (adj) belittled, diminished, small (made to seem smaller or less (especially in
worth)) "her comments made me feel small”

Adverb

27

S: (adv) small (on a small scale) "think small"

(https://wordnet.princeton.edu/

http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm)
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Input (word, PeanPOS)

Lexicon #—+——

(n

Lexicon Lookup

Use case:

e Resource
. . Direct Success
BioLemmatizer o o
Return lemma
_— Hierarchical I3
Input (word, NUPOS) lexicon lookup within = Input (word)

Return lemma

Direct
lexicon lookup within
entries of NUPOS

Lexicon lookup within
entrics of all tagsets

Success

Converting PennPOS to NUPOS

« Based on MorphAdorner

|
Return lemma " I
. . . ' Failure Failure \
- E hed with b dical- Dl )™ '
n rl C e W I I O m e I C a Hierarchical Success lexicon lookup within s Return lemmas i
Wl ] lexi Jook ithi of all possible
specific resources (lexicon) Cmornrs/ | T Purof Spoch |
Beturn lemma :
Failure — Hierarchical Success :
lexicon lookup within |
entries of NUPOS :
Failure Return lemma i
I
|
e —_—
@ [ Detachment |
Rule-based Rules
Lemmatization S
Success Failure Resource

Should the word class
be lemmatized ?

No

Y

Apply rules of
the word class

Lexicon
validation

Lexicon
validation

Return lemma




29

Hasso
Plattner
Institut

Machine learning-based morphological parsing

Based on available training data, e.qg., from the Morpho

Challenge
Language Examples
Enalish baby-sitters baby N sit V er s +PL
g indoctrinated in p doctrine N ate s +PAST

Finnish linuxiin linux N +ILL
makaronia makaroni N +PTV

German choreographische choreographie N isch +AD]-e
zurueckzubehalten zurueck B zu be halt V +INF

Turkish kontrole kontrol +DAT
popUlerliGini popUler +DER 1Hg +P0S2S +ACC, popUler +DER 1Hg +P0S3 +ACC3

(http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml)
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Conditional random fields (CRF)

« A discriminative undirected probabilistic graphical model for

structured prediction

Siv T

SEQUENCE

Naive Bayes

cu@m

Logistic Regression

i1 o)

GENERAL
HMMs GRAPHS Generative directed models

GU@IAL l:l]H NAL
m GENERAL

Linear-chain CRFs GH‘“‘FHS General CRFs

(http://lhomepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf)
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Conditional random fields (CRF)

Morphology parsing as a classification task

Linear-chain CRF is to exploit the dependencies between the
output variables using a chain structured undirected graph

drivers ==  Jdriv + er + §

START B M ™M E B E S STOP
<w> d r 1 v e 1 8§ </w>

(http://www.aclweb.org/anthology/W13-3504)
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Conditional random fields (CRF)

» Features:

- Left and right substrings, e.q., {v, iv, riv, driv, <w>driv}
and {e, er, ers, ers</w>} for ,driver”

- Rules, such as the following for -ed words (, talked”,
~played” and , speed”):

« position tis a segment boundary if its right context is
ed and the left context is not spe.

(http://www.aclweb.org/anthology/W13-3504)



(http:/iwww.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)
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Recurrent neural networks language model (RNNLM)

* Recurrent neural networks (RNN) is a class of NN in which
connections between the units form a directed cycle.

* |t makes use of sequential information.

« It does not assume independence between input and output.

0

O ﬂf—f t t+1

VT v 5 VTS VTS
?3* ﬁﬂ*f{’vovﬁ
U U U

-1 xl +1

U

X

A recurrent neural network and the unfolding in time of the computation involved in its forward

computation. Source: Nature
33
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Long short-term memory (LSTM)

« |tis a special kind of RNN that connects previous information to the
present task.

« Itis capable to learn long-term dependencies and is suitable for
sequence learning tasks.

® ® ©
| ( | 1

:
A J A
®

| |
2 X &)

The repeating module in a standard RNN contains a single layer.

34 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Long short-term memory (LSTM)

« LSTMs usually have four interating layers (but there are many

variations of the architecture).

> -»>

e N
—>—> @
A Q
[Gr] [0]
._.

® ©

> -»>
b "y

&) ®

|
&

The repeating module in an LSTM contains four interacting layers.

35

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



(http://iiis.tsinghua.edu.cn/~weblt/papers/window-Istm-morph-segmentation.pdf)
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LSTM for morphological segmentation

« Instead of relying heavily on linguistic knowledge (e.g., CRFs),
the NN automatically learns the structure of input sequences
and predict morphological boundaries for words.

« Series of window-based LSTM architectures for morphological
segmentation.

« Predictions based on both past and future inputs, i.e., left and
right neighbors.

 Classification task based on {B,M,E,S} classes:
<W> </w>

a ¢ t o 1 s
START B M E B E S STOP

36 (http:/fiiis.tsinghua.edu.cn/~weblt/papers/window-Istm-morph-segmentation.pdf)



(http:/fiiis.tsinghua.edu.cn/~weblt/papers/window-Istm-morph-segmentation. pdf)

LSTM for morphological segmentation

e Simple Window LSTM
model considers a new
character window and
label independently at
each step.

37
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<w>a|c t o r

S | </w>

Vi V2 V3 Vs

Ve

Vg
l .. Central Character

Embedding

log pq

I

;

LSTM

v

P1 — LSTM -«

Welg Iy

Figure 2: Window LSTM Model



(http://iiis.tsinghua.edu.cn/~weblt/papers/window-Istm-morph-segmentation.pdf)

LSTM for morphological segmentation

* Multi-Window
LSTM model
processes an
entire word
jointly.
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Input Word
<w>a|C||CO ]I |S K/w>
".
Window Approach v Window Central Character
Embedding
LSTM
¢ Labels Sequences
P
logp; |e— p; |e LSTM - Welo 1
I
' i
|
logp; |« Py [« LSTM =1 welp el
I i
|
""" I ssssss
I
' i
logpr |= PT | LSTM - Welrp s lm1

Figure 3: Multi-Window LSTM model
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(http://iiis.tsinghua.edu.cn/~weblt/papers/window-Istm-morph-segmentation.pdf)
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LSTM for morphological segmentation

 The model first makes a

39

forward pass to process the
sequence in the normal
order.

Then adopts an additional
backward pass to process
it in reverse order.

With these bidirectional
passes, the network is able
to learn even more fine-
grained features from the
input words and
corresponding label
sequences.

e e S Wind S
/:\."indow incow Embedding
Embedding

Forward /ayer Welo WelN-1
7 .

LSTM |»| LSTM [ ... » LSTM LSTM —*

«GTM . -

Backward Layer

Y

LSTM

Figure 4: Bidirectional Multi-Window LSTM model



40

Summary

« Morphological parsing
« Methods:

-  Finite-state autonoma & lexicon
-  Finte-state transistors
- Machine learning

« Training data & features
« Sequential algorithms, e.g., CRFs and RNN-LSTM
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Exercise

* Project:

- Could morphological parsing support your project?

- Choose a morphological parser and try it in your document
collection. Manually check a sample of the results.
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Tools

* FS-based morpha: https://github.com/knowitall/morpha

 WordNet lemmatizer:
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordN
et/stem.pm

* MorphAdoner: http://morphadorner.northwestern.edu/morphadorner/
 CLEAR parser: https://code.google.com/archive/p/clearparser/

* BioLemmatizer: http://biolemmatizer.sourceforge.net/

* NLP DotNet (on-line): http://nlpdotnet.com/services/Morphparser.aspx

* Morphisto (German): https://code.google.com/archive/p/morphisto/


https://github.com/knowitall/morpha
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm
http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/lib/WordNet/stem.pm
http://morphadorner.northwestern.edu/morphadorner/
https://code.google.com/archive/p/clearparser/
http://biolemmatizer.sourceforge.net/
http://nlpdotnet.com/services/Morphparser.aspx
https://code.google.com/archive/p/morphisto/

43

Further reading

* NLP book: Chapter 3
* DL book: Chapter 10

- http://www.deeplearningbook.org/contents/rnn.htmi

* Other references:

- BioLemmatizer (good overview of various lemmatizers):
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/

- morpha: http://dl.acm.org/citation.cfm?id=973922
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http://www.deeplearningbook.org/contents/rnn.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359276/
http://dl.acm.org/citation.cfm?id=973922
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