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Language model

● Finding the probability of a sentence or a sequence of words

–  P(S) = P(w1 , w2 , w3 , ..., wn )

2

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...
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Motivation: Speech recognition

– „Computers can recognize speech.“

– „Computers can wreck a nice peach.”

– „Give peace a chance.“

– „Give peas a chance.“

– Ambiguity in speech:

● „Friday“ vs. „fry day“
● „ice cream“ vs. „I scream“

4 (http://worldsgreatestsmile.com/html/phonological_ambiguity.html)



Motivation: Handwriting recognition

● „Take the money and run“, Woody Allen:

– „Abt naturally.“ vs. „Act naturally.“

– „I have a gub.” vs. „I have a gun.“

5 (https://www.youtube.com/watch?v=I674fBVanAA)



Motivation: Machine Translation

● „The cat eats...“

– „Die Katze frisst...“

– „Die Katze isst...“

● Chinese to English:

– „He briefed to reporters on the chief contents of the 
statements“

– „He briefed reporters on the chief contents of the statements“

– „He briefed to reporters on the main contents of the 
statements“

– „He briefed reporters on the main contents of the statements“
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Motivation: Spell Checking

● „I want to adver this project“

– „adverb“ (noun)

– „advert“ (verb)

● „They are leaving in about fifteen minuets to go to her house.“

– „minutes“

● „The design an construction of the system will take more than a 
year.“ 

– „and“
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Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn )

● „Computers can recognize speech.“

– P(Computer, can, recognize, speech)
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Conditional Probability

9

P (A∣B )=
P (A∩B)

P (A )

P (A , B)=P (A )⋅P (B∣A )

P (A , B ,C , D)=P ( A)⋅P (B∣A )⋅P (C∣A ,B )⋅P (D∣A ,B ,C )



Conditional Probability

10

P(S )=P (w1)⋅P (w2∣w1)⋅P(w3∣w1 , w2)...P (wn∣w1 ,w2 , , w3 , ... , , wn)

P (S )= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|Computer can)· 
P(speech|Computer can recognize)



Corpus

● Probabilities are based on counting things

● A corpus is a computer-readable collection of text or speech

– Corpus of Contemporary American English

– The British National Corpus

– The International Corpus of English

– The Google N-gram Corpus (https://books.google.com/ngrams)
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https://books.google.com/ngrams


Word occurrence

● A language consists of a set of „V“ words (Vocabulary)

● A word can occur several times in a text

– Word Token: each occurrence of words in text

– Word Type: each unique occurrence of words in the text

● „This is a sample text from a book that is read every day.“

– # Word Tokens: 13

– # Word Types: 11
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Word occurrence

● Google N-Gram corpus

– 1,024,908,267,229 word tokens

– 13,588,391 word types

● Why so many word types?

– Large English dictionaries have around 500k word types
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Word frequency
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Word frequency
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Zipf's Law

● The frequency of any word is inversely proportional to its rank 
in the frequency table

● Given a corpus of natural language utterances, the most 
frequent word will occur approximately

– twice as often as the second most frequent word,

– three times as often as the third most frequent word,

– …

● Rank of a word times its frequency is approximately a constant

– Rank · Freq ≈ c

– c ≈ 0.1 for English
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Zipf's Law
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Zipf's Law

● Zipf’s Law is not very accurate for very frequent and very 
infrequent words
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Zipf's Law

● But very precise for intermediate ranks
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Zipf's Law for German
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(https://de.wikipedia.org/wiki/Zipfsches_Gesetz#/media/File:Zipf-Verteilungn.png)



Back to Conditional Probability
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P (S )=P (w1)⋅P (w2∣w1)⋅P (w3∣w1 , w2)... P (wn∣w1 ,w2 , ,w3 , ... , , wn)

P (S )= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|Computer can)· 
P(speech|Computer can recognize)



Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● What is the problem of this approach?

22

P (speech∣Computer can recognize )=
#(Computer can recognize speech)

# (Computer can recognize)



Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● Too many phrases

● Limited text for estimating probabilities

● Simplification assumption → Markov assumption

23

P(speech∣Computer can recognize)=
#(Computer can recognize speech)

# (Computer can recognize)



Markov assumption

24

P (S )= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S )= ∏ P (w i∣wi−1)
n

i−1



Markov assumption
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P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|can)· 
P(speech|recognize)

P(Computer,can,recognize,speech)   = P(Computer)· 
P(can|Computer)· 
P(recognize|Computer can)· 
P(speech|Computer can recognize)

P (speech∣recognize )=
#(recognize speech)

# (recognize)



N-gram model

● Unigram:

● Bigram:

● Trigram:

● N-gram:

26

P (S )= ∏ P (wi∣w1 , w2 , ... , w i−1)
n

i−1

P (S )= ∏ P (w i∣wi−1 ,w i−2)
n

i−1

P (S )= ∏ P (w i∣wi−1)
n

i−1

P (S )= ∏ P (w i)
n

i−1



N-gram model
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Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● Vocabulary:

– V = {I,saw,the,boy,man,is,working,walked,in,street}

28



Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s
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Maximum Likelihood Estimation

● Estimation of maximum likelihood for a new sentence

– <s> I saw the man </s>
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P(S )=P ( I∣< s>)⋅P (saw∣I )⋅P(the∣saw)⋅P (man∣the)

P(S )=
#(< s> I )
# (< s>)

⋅
#( I saw)

#( I )
⋅
#(saw the)
#(saw)

⋅
#(theman)

# (the)

P (S )=
2
3
⋅
1
2
⋅
1
1
⋅
1
3



Unknown words

● <s> I saw the woman </s>

● Possible Solutions?
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Unknown words

● Possible Solutions:

– Closed vocabulary: test set can only contain words from this 
lexicon

– Open vocabulary: test set can contain unknown words

● Out of vocabulary (OOV) words:

– Choose a vocabulary
– Convert unknown (OOV) words to <UNK> word token
– Estimate probabilities for <UNK>

– Replace the first occurrence of every word type in the training 
data by <UNK> 
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Evaluation

● Divide the corpus to two parts: training and test

● Build a language model from the training set

● Estimate the probability of the test set

● Calculate the average branching factor of the test set
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Branching factor

● The number of possible words that can be used in each 
position of a text

● Maximum branching factor for each language is „V“

● A good language model should be able to minimize this 
number, i.e., give a higher probability to the words that occur 
in real texts
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Perplexity

● Goals: give higher probability to frequent texts

– minimize the perplexity of the frequent texts

35

P (S )=P (w1 ,w2 , ... ,wn)

Perplexity (S )=P (w1 , w2 , ... ,wn)
−

1
n= n√ 1

P (w1 ,w 2 , ... ,wn)

Perplexity(S )=
n√ ∏ 1

P (w i∣w1 , w2 , ... ,wi−1)i=1

n



Example of perplexity

● Wall Street Journal (19,979 word vocabulary)

– Training set: 38 million word

– Test set: 1.5 million words

● Perplexity:

– Unigram: 962

– Bigram: 170

– Trigram: 109
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Unknown n-grams

● Corpus:

– <s> I saw the boy </s>

– <s> the man is working </s>

– <s> I walked in the street </s>

● <s> I saw the man in the street </s>

37

P(S )=P ( I )⋅P ( saw∣I )⋅P (the∣saw )⋅P (man∣the)⋅P (i n∣man)⋅P (the∣i n)⋅P ( street∣the)

P (S )=
#( I )

#(< s>)
⋅
#( I saw)

#( I )
⋅
#( saw the)
#(saw )

⋅
#(the man)

#(the)
⋅
#(man i n)
#(man)

⋅
#(i n the)
#(i n)

⋅
#(the street )

#(the)

P (S )=
2
3
⋅
1
2
⋅
1
1
⋅
1
3
⋅
0
1
⋅
1
1
⋅
1
3



Smoothing – Laplace (Add-one)

● Small probability to all unseen n-grams

● Add one to all counts

38

P (w i∣w i−1)=
#(w i−1 ,wi)+1

#(w i−1)+V
P (w i∣wi−1)=

#(w i−1 ,w i)

# (wi−1)



Smoothing – Back-of

● Use a background probability (PBG)

– For instance „Scottish beer drinkers“ but no „Scottish beer 
eaters“

– Back-of to bigram „beer drinker“ and „beer eaters“

39

P (wi∣w i−1) =

#(w i−1 ,w i)

# (wi−1)

PBG

if #(wi−1 , w i)>0

otherwise



Backgroung probability

● Lower levels of n-gram can be used as background probability  (PBG)

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

40

(
1
V

)



Background probability – Back-of

41

P (w i∣wi−1) =

#(wi−1 , wi)

#(wi−1)

α(wi)P (w i)

if #(wi−1 ,w i)>0

otherwise

P(w i) =

#(wi)

N

α(wi)
1
V

if #(wi)>0

otherwise



Smoothing – Interpolation

● Higher and lower order n-gram models have diferent strengths 
and weaknesses

– high-order n-grams are sensitive to more context, but have 
sparse counts

– low-order n-grams consider only very limited context, but 
have robust counts

42

P (wi∣w i−1)=λ1⋅
#(w i−1 ,w i)

# (w i−1)
+λ2⋅PBG ∑ λ=1



Background probability – Interpolation

43

P (w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅P (wi)

P(w i)=λ1⋅
#(w i)

N
+λ2⋅

1
V

P(w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅

#(wi)

N
+λ3⋅

1
V



Parameter Tuning

● Held-out dataset (development set)

– 80% (training), 10% (dev-set), 10% (test)

● Minimize the perplexity of the held-out dataset

44



N-gram Neural LM with feed-forward NN

45
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)

Input as one-hot 
representations 
of the words in 
context u (n-1),

where n is the 
order of the 
language model



One-hot representation

● Corpus: „the man runs.“

● Vocabulary = {man,runs,the,.}

● Input/output for p(runs|the man)

46

0
0
1
0

x
0
=

1
0
0
0

x
1
=

0
1
0
0

y
true

=



N-gram Neural LM with 

feed-forward NN

● Input: context of n-1 previous words

● Output: probability distribution for 
next word

● Size of input/output: vocabulary size

● One or many hidden layers

● Embedding layer is lower 
dimensional and dense

– Smaller weight matrices

– Learns to map similar words to 
similar points in the vector 
space

47
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)



Summary

● Words

– Tokenization, Segmentation

● Language Model

– Word occurrence (word type and word token)

– Zipf's Law

– Maximum Likelihood Estimation

● Markov assumption and n-grams

– Evaluation: Perplexity

– Smoothing methods

– Neural networks
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Further reading

● Book Jurafski & Martin

– Chapter 4

– https://web.stanford.edu/~jurafsky/slp3/4.pdf

● „Classical“ neural network language model (Bengio et al 
2003):

– http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.
pdf

49

https://web.stanford.edu/~jurafsky/slp3/4.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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