
Natural Language Processing

SoSe 2017

Language Model

Dr. Mariana Neves May 15th, 2017

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

2

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

3

… all of a sudden I notice three guys standing on the sidewalk ...

… on guys all I of notice sidewalk three a sudden standing the ...





Motivation: Speech recognition

– „Computers can recognize speech.“

– „Computers can wreck a nice peach.”

– „Give peace a chance.“

– „Give peas a chance.“

– Ambiguity in speech:

● „Friday“ vs. „fry day“
● „ice cream“ vs. „I scream“

4 (http://worldsgreatestsmile.com/html/phonological_ambiguity.html)

Motivation: Handwriting recognition

● „Take the money and run“, Woody Allen:

– „Abt naturally.“ vs. „Act naturally.“

– „I have a gub.” vs. „I have a gun.“

5 (https://www.youtube.com/watch?v=I674fBVanAA)

Motivation: Machine Translation

● „The cat eats...“

– „Die Katze frisst...“

– „Die Katze isst...“

● Chinese to English:

– „He briefed to reporters on the chief contents of the
statements“

– „He briefed reporters on the chief contents of the statements“

– „He briefed to reporters on the main contents of the
statements“

– „He briefed reporters on the main contents of the statements“

6

Motivation: Spell Checking

● „I want to adver this project“

– „adverb“ (noun)

– „advert“ (verb)

● „They are leaving in about fifteen minuets to go to her house.“

– „minutes“

● „The design an construction of the system will take more than a
year.“

– „and“

7

Language model

● Finding the probability of a sentence or a sequence of words

– P(S) = P(w1 , w2 , w3 , ..., wn)

● „Computers can recognize speech.“

– P(Computer, can, recognize, speech)

8

Conditional Probability

9

P (A∣B)=
P (A∩B)

P (A)

P (A , B)=P (A)⋅P (B∣A)

P (A , B ,C , D)=P (A)⋅P (B∣A)⋅P (C∣A ,B)⋅P (D∣A ,B ,C)

Conditional Probability

10

P(S)=P (w1)⋅P (w2∣w1)⋅P(w3∣w1 , w2)...P (wn∣w1 ,w2 , , w3 , ... , , wn)

P (S)= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

Corpus

● Probabilities are based on counting things

● A corpus is a computer-readable collection of text or speech

– Corpus of Contemporary American English

– The British National Corpus

– The International Corpus of English

– The Google N-gram Corpus (https://books.google.com/ngrams)

11

https://books.google.com/ngrams

Word occurrence

● A language consists of a set of „V“ words (Vocabulary)

● A word can occur several times in a text

– Word Token: each occurrence of words in text

– Word Type: each unique occurrence of words in the text

● „This is a sample text from a book that is read every day.“

– # Word Tokens: 13

– # Word Types: 11

12

Word occurrence

● Google N-Gram corpus

– 1,024,908,267,229 word tokens

– 13,588,391 word types

● Why so many word types?

– Large English dictionaries have around 500k word types

13

Word frequency

14

?

Word frequency

15

Zipf's Law

● The frequency of any word is inversely proportional to its rank
in the frequency table

● Given a corpus of natural language utterances, the most
frequent word will occur approximately

– twice as often as the second most frequent word,

– three times as often as the third most frequent word,

– …

● Rank of a word times its frequency is approximately a constant

– Rank · Freq ≈ c

– c ≈ 0.1 for English

16

Zipf's Law

17

Zipf's Law

● Zipf’s Law is not very accurate for very frequent and very
infrequent words

18

Zipf's Law

● But very precise for intermediate ranks

19

Zipf's Law for German

20

(https://de.wikipedia.org/wiki/Zipfsches_Gesetz#/media/File:Zipf-Verteilungn.png)

Back to Conditional Probability

21

P (S)=P (w1)⋅P (w2∣w1)⋅P (w3∣w1 , w2)... P (wn∣w1 ,w2 , ,w3 , ... , , wn)

P (S)= ∏ P (w i∣w1 ,w2 , ... ,wi−1)
n

i

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● What is the problem of this approach?

22

P (speech∣Computer can recognize)=
#(Computer can recognize speech)

(Computer can recognize)

Maximum Likelihood Estimation

● P(speech|Computer can recognize)

● Too many phrases

● Limited text for estimating probabilities

● Simplification assumption → Markov assumption

23

P(speech∣Computer can recognize)=
#(Computer can recognize speech)

(Computer can recognize)

Markov assumption

24

P (S)= ∏ P (w i∣w1 , w2 , ... , wi−1)
n

i−1

P (S)= ∏ P (w i∣wi−1)
n

i−1

Markov assumption

25

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|can)·
P(speech|recognize)

P(Computer,can,recognize,speech) = P(Computer)·
P(can|Computer)·
P(recognize|Computer can)·
P(speech|Computer can recognize)

P (speech∣recognize)=
#(recognize speech)

(recognize)

N-gram model

● Unigram:

● Bigram:

● Trigram:

● N-gram:

26

P (S)= ∏ P (wi∣w1 , w2 , ... , w i−1)
n

i−1

P (S)= ∏ P (w i∣wi−1 ,w i−2)
n

i−1

P (S)= ∏ P (w i∣wi−1)
n

i−1

P (S)= ∏ P (w i)
n

i−1

N-gram model

27

Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s>

● Vocabulary:

– V = {I,saw,the,boy,man,is,working,walked,in,street}

28

Maximum Likelihood Estimation

● <s> I saw the boy </s>

● <s> the man is working </s>

● <s> I walked in the street </s

29

Maximum Likelihood Estimation

● Estimation of maximum likelihood for a new sentence

– <s> I saw the man </s>

30

P(S)=P (I∣< s>)⋅P (saw∣I)⋅P(the∣saw)⋅P (man∣the)

P(S)=
#(< s> I)
(< s>)

⋅
#(I saw)

#(I)
⋅
#(saw the)
#(saw)

⋅
#(theman)

(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3

Unknown words

● <s> I saw the woman </s>

● Possible Solutions?

31

Unknown words

● Possible Solutions:

– Closed vocabulary: test set can only contain words from this
lexicon

– Open vocabulary: test set can contain unknown words

● Out of vocabulary (OOV) words:

– Choose a vocabulary
– Convert unknown (OOV) words to <UNK> word token
– Estimate probabilities for <UNK>

– Replace the first occurrence of every word type in the training
data by <UNK>

32

Evaluation

● Divide the corpus to two parts: training and test

● Build a language model from the training set

● Estimate the probability of the test set

● Calculate the average branching factor of the test set

33

Branching factor

● The number of possible words that can be used in each
position of a text

● Maximum branching factor for each language is „V“

● A good language model should be able to minimize this
number, i.e., give a higher probability to the words that occur
in real texts

34

Perplexity

● Goals: give higher probability to frequent texts

– minimize the perplexity of the frequent texts

35

P (S)=P (w1 ,w2 , ... ,wn)

Perplexity (S)=P (w1 , w2 , ... ,wn)
−

1
n= n√ 1

P (w1 ,w 2 , ... ,wn)

Perplexity(S)=
n√ ∏ 1

P (w i∣w1 , w2 , ... ,wi−1)i=1

n

Example of perplexity

● Wall Street Journal (19,979 word vocabulary)

– Training set: 38 million word

– Test set: 1.5 million words

● Perplexity:

– Unigram: 962

– Bigram: 170

– Trigram: 109

36

Unknown n-grams

● Corpus:

– <s> I saw the boy </s>

– <s> the man is working </s>

– <s> I walked in the street </s>

● <s> I saw the man in the street </s>

37

P(S)=P (I)⋅P (saw∣I)⋅P (the∣saw)⋅P (man∣the)⋅P (i n∣man)⋅P (the∣i n)⋅P (street∣the)

P (S)=
#(I)

#(< s>)
⋅
#(I saw)

#(I)
⋅
#(saw the)
#(saw)

⋅
#(the man)

#(the)
⋅
#(man i n)
#(man)

⋅
#(i n the)
#(i n)

⋅
#(the street)

#(the)

P (S)=
2
3
⋅
1
2
⋅
1
1
⋅
1
3
⋅
0
1
⋅
1
1
⋅
1
3

Smoothing – Laplace (Add-one)

● Small probability to all unseen n-grams

● Add one to all counts

38

P (w i∣w i−1)=
#(w i−1 ,wi)+1

#(w i−1)+V
P (w i∣wi−1)=

#(w i−1 ,w i)

(wi−1)

Smoothing – Back-of

● Use a background probability (PBG)

– For instance „Scottish beer drinkers“ but no „Scottish beer
eaters“

– Back-of to bigram „beer drinker“ and „beer eaters“

39

P (wi∣w i−1) =

#(w i−1 ,w i)

(wi−1)

PBG

if #(wi−1 , w i)>0

otherwise

Backgroung probability

● Lower levels of n-gram can be used as background probability (PBG)

– Trigram » Bigram

– Bigram » Unigram

– Unigram » Zerogram

40

(
1
V

)

Background probability – Back-of

41

P (w i∣wi−1) =

#(wi−1 , wi)

#(wi−1)

α(wi)P (w i)

if #(wi−1 ,w i)>0

otherwise

P(w i) =

#(wi)

N

α(wi)
1
V

if #(wi)>0

otherwise

Smoothing – Interpolation

● Higher and lower order n-gram models have diferent strengths
and weaknesses

– high-order n-grams are sensitive to more context, but have
sparse counts

– low-order n-grams consider only very limited context, but
have robust counts

42

P (wi∣w i−1)=λ1⋅
#(w i−1 ,w i)

(w i−1)
+λ2⋅PBG ∑ λ=1

Background probability – Interpolation

43

P (w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅P (wi)

P(w i)=λ1⋅
#(w i)

N
+λ2⋅

1
V

P(w i∣wi−1)=λ1⋅
#(w i−1 ,wi)

#(wi−1)
+λ2⋅

#(wi)

N
+λ3⋅

1
V

Parameter Tuning

● Held-out dataset (development set)

– 80% (training), 10% (dev-set), 10% (test)

● Minimize the perplexity of the held-out dataset

44

N-gram Neural LM with feed-forward NN

45
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)

Input as one-hot
representations
of the words in
context u (n-1),

where n is the
order of the
language model

One-hot representation

● Corpus: „the man runs.“

● Vocabulary = {man,runs,the,.}

● Input/output for p(runs|the man)

46

0
0
1
0

x
0
=

1
0
0
0

x
1
=

0
1
0
0

y
true

=

N-gram Neural LM with

feed-forward NN

● Input: context of n-1 previous words

● Output: probability distribution for
next word

● Size of input/output: vocabulary size

● One or many hidden layers

● Embedding layer is lower
dimensional and dense

– Smaller weight matrices

– Learns to map similar words to
similar points in the vector
space

47
(https://www3.nd.edu/~dchiang/papers/vaswani-emnlp13.pdf)

Summary

● Words

– Tokenization, Segmentation

● Language Model

– Word occurrence (word type and word token)

– Zipf's Law

– Maximum Likelihood Estimation

● Markov assumption and n-grams

– Evaluation: Perplexity

– Smoothing methods

– Neural networks

48

Further reading

● Book Jurafski & Martin

– Chapter 4

– https://web.stanford.edu/~jurafsky/slp3/4.pdf

● „Classical“ neural network language model (Bengio et al
2003):

– http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.
pdf

49

https://web.stanford.edu/~jurafsky/slp3/4.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

