Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Object-oriented Enterprise Application
Programming Model for In-Memory Databases

Minimal Projection Enforcement

31. Mai 2012 | Jonas Witt

Minimal Projections

AKA “How to avoid SELECT *”

As a developer, it's convenient to write SELECT * and don't think
about which attributes are going to be used

0 See analysis of SAP ERP code
ORMs use SELECT * / full projections by default
Problem:

o It's slower, since unused attributes are transmitted to the
client

Solutions:

0 Educate developers about the issue (?)
o Make ORMs smarter

How serious is this?

Tested on MySQL 5
o TODO: test on column-based DB
50 columns (mixed varchar(255) & integer)
o Average row length = 850 Bytes
Vary number of SELECTed columns
0 Fastest case: SELECT columnl FROM table
0 Worst case: SELECT * FROM table
Use MySQL profiler to analyze where time is spent

SELECT 50 rows

3 ms

2 ms

1ms

5x

0 ms

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

selected columns

I 1: starting I 2: checking permissions | 3: Opening tables I 4: System lock
o 5:init | 6: optimizing [7: statistics [8: preparing

.~ 9: executing I 10: Sending data . 11:end ~ 12: query end
. 13:closingtables [14: freeing items - 15:logging slow query [16: cleaning up

Jonas Witt | 31.05.2012

SELECT 5000 rows

150 ms

100 ms

50 ms

11x

0 ms
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

selected columns

I 2: checking permissions | 3: Opening tables I 4: System lock

'~ 6: optimizing [7: statistics I 8: preparing
I 10: Sending data . 11:end - 12:query end
© 14: freeing items 15: logging slow query [16: cleaning up

Jonas Witt | 31.05.2012

SELECT 5 rows

1,5ms

1,0 ms

1.2x
0,5ms
0ms
1 83 5 7 9 11 13 15 17 19 21 283 25 27 29 31 33 35 37 39 41 43 45 47 49
selected columns

I 1: starting B 2: checking permissions [3: Opening tables I 4: System lock

I 5:init | 6: optimizing I 7: statistics [8: preparing

. 9: executing I 10: Sending data . 11:end - 12: query end

I 13:closing tables [14: freeing items 15: logging slow query [16: cleaning up

Jonas Witt | 31.05.2012

Optimized ORM SELECT

m 1) Stats Collection Phase
0 Use query backtrace as unique identifier
o SELECT *
0 record which attributes have been accessed
m 2) Optimized Execution Phase
0 Lookup stats using query identifier
o SELECT only attributes that are likely to be used & PKs

0 When unfetched attributes are accessed, load them using the
record’s PK & update stats

ORM Test Case

m ActiveRecord: default "ORM”
used in Ruby on Rails

o Active record pattern +
inheritance +
associations

m Arel: An object-oriented
interpretation of relational
algebra in Ruby

unis = University.where(:city
=> "Potsdam").order("size
DESC").limit(10)

unis = unis.select(:name)

Ruby on Rails 3:

ActiveRecord 3

Arel
Algebra Engines

AR Connection Adapters
SQL Database

http://www.slideshare.net/brynary/
arel-ruby-relational-algebra

Jonas Witt | 31.05.2012

http://ar.rubyonrails.org/
http://ar.rubyonrails.org/
http://www.slideshare.net/brynary/arel-ruby-relational-algebra
http://www.slideshare.net/brynary/arel-ruby-relational-algebra
http://www.slideshare.net/brynary/arel-ruby-relational-algebra
http://www.slideshare.net/brynary/arel-ruby-relational-algebra

