
A data science process – How to recommend a
Netflix movie in 2010? And what are the

challenges in 2018?

Dominik Jäkel

Bachelor Student

Hasso Plattner Institute, Potsdam, Germany

E-Mail:dominik.jaekel@student.hpi.de

User	rates movie

Select	dimensions
for matrix

Matrix
Factorization

Recommendations

User	choses movie

The Netflix challenge was a price competition starting in 2006 when Netflix was still a video rental service. The
aim of the competition was to outcompete Netflix’s own recommendation algorithm. In 2010 the research group
“BellKor's Pragmatic Chaos” won the competition by using matrix factorization techniques (as presented by
Rainer Gemulla). This poster visualizes the data science process of the recommender algorithm in 2010 with an
emphasis on the challenges for algorithm. And in 2018 many new challenges have occurred. Netflix is now a
global player streaming in 190 countries with 120.000 Million users needing to adjust its algorithm.

Sources
Gemulla, R. (2017, December 19). Matrix Factorization Techniques for Recommender Systems. Lecture.
Abel, F. (2017, November 21). Data Engineering for Job Recommendations. Lecture.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8).
Gomez-Uribe, C. A., & Hunt, N. (2016). The netflix recommender system: Algorithms, business value,
and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 13.

Recommendations
for 190 countries

Culture	&	
Personal	
Tastes

Language

Video	
Quality	

90	seconds
attention
span

Rabbit
hole	

problem

Like	vs.	
Stars

Outliers

From users
who rate	

1000	movies
to	users who
rate	only one

50 10

30

Intuition behind latent factor models (2)
• Does user u like item v?
• Quality: measured via direction from origin (cos\(u, v))

I Same direction æ attraction: cos\(u, v) ¥ 1
I Opposite direction æ repulsion: cos\(u, v) ¥ ≠1
I Orthogonal direction æ oblivious: cos\(u, v) ¥ 0

• Strength: measured via distance from origin (ÎuÎ ÎvÎ)
I Far from origin æ strong relationship: ÎuÎ ÎvÎ large
I Close to origin æ weak relationship: ÎuÎ ÎvÎ small

• Overall preference: measured via dot product (u · v)

u · v = ÎuÎ ÎvÎ u · v
ÎuÎ ÎvÎ = ÎuÎ ÎvÎ cos\(u, v)

I Same direction, far out æ strong attraction: u · v large positive
I Opposite direction, far out æ strong repulsion: u · v large negative
I Orthogonal direction, any distance æ oblivious: : u · v ¥ 0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.

8 / 32

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Approaches to	
minimize
equation

Stochastic
Gradient	
Descent

Alternating
Last	Square

Confidence
scores

Eliminate
external
influences

First	time	users
Extract

available user
information
from WWW

Eleminating
biases

Users	rating too
favorable

Temporal		
dynamics
Changing

interest over
time

COVER FE ATURE

COMPUTER 46

prove accuracy. Decomposing ratings into distinct terms
allows the system to treat different temporal aspects sepa-
rately. Specifically, the following terms vary over time: item
biases, bi(t); user biases, bu(t); and user preferences, pu(t).

The first temporal effect addresses the fact that an
item’s popularity might change over time. For example,
movies can go in and out of popularity as triggered by
external events such as an actor’s appearance in a new
movie. Therefore, these models treat the item bias bi as a
function of time. The second temporal effect allows users
to change their baseline ratings over time. For example, a
user who tended to rate an average movie “4 stars” might
now rate such a movie “3 stars.” This might reflect several
factors including a natural drift in a user’s rating scale,
the fact that users assign ratings relative to other recent
ratings, and the fact that the rater’s identity within a house-
hold can change over time. Hence, in these models, the
parameter bu is a function of time.

Temporal dynamics go beyond this; they also affect
user preferences and therefore the interaction between
users and items. Users change their preferences over time.
For example, a fan of the psychological thrillers genre
might become a fan of crime dramas a year later. Simi-
larly, humans change their perception of certain actors
and directors. The model accounts for this effect by taking
the user factors (the vector pu) as a function of time. On
the other hand, it specifies static item characteristics, qi,
because, unlike humans, items are static in nature.

Exact parameterizations of time-varying parameters11
lead to replacing Equation 4 with the dynamic prediction
rule for a rating at time t:

r̂ui (t) = + bi(t) + bu(t) + qi

T pu(t) (7)

INPUTS WITH VARYING CONFIDENCE LEVELS
In several setups, not all observed ratings deserve the

same weight or confidence. For example, massive adver-
tising might influence votes for certain items, which do
not aptly reflect longer-term characteristics. Similarly, a
system might face adversarial users that try to tilt the rat-
ings of certain items.

Another example is systems built around implicit
feedback. In such systems, which interpret ongoing
user behavior, a user’s exact preference level is hard to
quantify. Thus, the system works with a cruder binary
representation, stating either “probably likes the product”
or “probably not interested in the product.” In such cases,
it is valuable to attach confidence scores with the esti-
mated preferences. Confidence can stem from available
numerical values that describe the frequency of actions,
for example, how much time the user watched a certain
show or how frequently a user bought a certain item. These
numerical values indicate the confidence in each obser-
vation. Various factors that have nothing to do with user

difficult to reach general conclusions on their taste. A way
to relieve this problem is to incorporate additional sources
of information about the users. Recommender systems can
use implicit feedback to gain insight into user preferences.
Indeed, they can gather behavioral information regardless
of the user’s willingness to provide explicit ratings. A re-
tailer can use its customers’ purchases or browsing history
to learn their tendencies, in addition to the ratings those
customers might supply.

For simplicity, consider a case with a Boolean implicit
feedback. N(u) denotes the set of items for which user u
expressed an implicit preference. This way, the system
profiles users through the items they implicitly preferred.
Here, a new set of item factors are necessary, where item
i is associated with xi R f. Accordingly, a user who
showed a preference for items in N(u) is characterized by
the vector

 xi

i N u()

.

 Normalizing the sum is often beneficial, for example,
working with

|N(u)|–0.5 xi

i N u()

.4,5

Another information source is known user attributes,
for example, demographics. Again, for simplicity consider
Boolean attributes where user u corresponds to the set
of attributes A(u), which can describe gender, age group,
Zip code, income level, and so on. A distinct factor vector
ya R f corresponds to each attribute to describe a user
through the set of user-associated attributes:

ya

a A u()

The matrix factorization model should integrate all
signal sources, with enhanced user representation:

r̂ui
= + bi + bu + qi

T [pu + |N(u)|–0.5 x yi a

i N u a A u() ()

] (6)

While the previous examples deal with enhancing user

representation—where lack of data is more common—
items can get a similar treatment when necessary.

TEMPORAL DYNAMICS
So far, the presented models have been static. In real-

ity, product perception and popularity constantly change
as new selections emerge. Similarly, customers’ inclina-
tions evolve, leading them to redefine their taste. Thus,
the system should account for the temporal effects re-
flecting the dynamic, time-drifting nature of user-item
interactions.

The matrix factorization approach lends itself well to
modeling temporal effects, which can significantly im-

Netflix uses not	one but	many seperated algorithms

Star	rating provides better data but	users didn‘t understand it

Copies of algorithm run isolated in	various cultural regions

Recognize users sharing one account!

Using system to	estimate which movies to	buy for how long

Connecting members from different	cultures through taste

For each training
case predict the

error

Modify	
parameters in	the
opposite direction

of gradients

Result:	Minimized
equation

45AUGUST 2009

data aspects and other application-specific requirements.
This requires accommodations to Equation 1 while staying
within the same learning framework. Equation 1 tries to cap-
ture the interactions between users and items that produce
the different rating values. However, much of the observed
variation in rating values is due to effects associated with
either users or items, known as biases or intercepts, indepen-
dent of any interactions. For example, typical collaborative
filtering data exhibits large systematic tendencies for some
users to give higher ratings than others, and for some items
to receive higher ratings than others. After all, some products
are widely perceived as better (or worse) than others.

Thus, it would be unwise to explain the full rating value
by an interaction of the form qi

Tpu. Instead, the system tries
to identify the portion of these values that individual user or
item biases can explain, subjecting only the true interaction
portion of the data to factor modeling. A first-order approxi-
mation of the bias involved in rating rui is as follows:

 bui = + bi + bu (3)

The bias involved in rating rui is denoted by bui and ac-
counts for the user and item effects. The overall average
rating is denoted by ; the parameters bu and bi indicate
the observed deviations of user u and item i, respectively,
from the average. For example, suppose that you want
a first-order estimate for user Joe’s rating of the movie
Titanic. Now, say that the average rating over all movies, ,
is 3.7 stars. Furthermore, Titanic is better than an average
movie, so it tends to be rated 0.5 stars above the average.
On the other hand, Joe is a critical user, who tends to rate
0.3 stars lower than the average. Thus, the estimate for
Titanic’s rating by Joe would be 3.9 stars (3.7 0.5 0.3).
Biases extend Equation 1 as follows:

r̂ui
= + bi bu qi

Tpu (4)

Here, the observed rating is broken down into its four
components: global average, item bias, user bias, and user-
item interaction. This allows each component to explain
only the part of a signal relevant to it. The system learns
by minimizing the squared error function:4,5

min
* * *, ,p q b

(,)u i

(rui bu bi pu
Tqi)

2 +

 (|| pu ||

2 + || qi ||
2 + bu

2 + bi
2) (5)

Since biases tend to capture much of the observed
signal, their accurate modeling is vital. Hence, other works
offer more elaborate bias models.11

ADDITIONAL INPUT SOURCES
Often a system must deal with the cold start problem,

wherein many users supply very few ratings, making it

the extent of regularization and is usually determined by
cross-validation. Ruslan Salakhutdinov and Andriy Mnih’s
“Probabilistic Matrix Factorization”7 offers a probabilistic
foundation for regularization.

LEARNING ALGORITHMS
Two approaches to minimizing Equation 2 are stochastic

gradient descent and alternating least squares (ALS).

Stochastic gradient descent
Simon Funk popularized a stochastic gradient descent

optimization of Equation 2 (http://sifter.org/~simon/
journal/20061211.html) wherein the algorithm loops
through all ratings in the training set. For each given
training case, the system predicts rui and computes the
associated prediction error

eui
def

 rui qi
T pu.

Then it modifies the parameters by a magnitude pro-
portional to in the opposite direction of the gradient,
yielding:

 q q e p qi i ui u i()
 p p e q pu u ui i u()

This popular approach4-6 combines implementation
ease with a relatively fast running time. Yet, in some cases,
it is beneficial to use ALS optimization.

Alternating least squares
Because both qi and pu are unknowns, Equation 2 is not

convex. However, if we fix one of the unknowns, the op-
timization problem becomes quadratic and can be solved
optimally. Thus, ALS techniques rotate between fixing the
qi’s and fixing the pu’s. When all pu’s are fixed, the system
recomputes the qi’s by solving a least-squares problem, and
vice versa. This ensures that each step decreases Equation
2 until convergence.8

While in general stochastic gradient descent is easier
and faster than ALS, ALS is favorable in at least two cases.
The first is when the system can use parallelization. In ALS,
the system computes each qi independently of the other
item factors and computes each pu independently of the
other user factors. This gives rise to potentially massive
parallelization of the algorithm.9 The second case is for
systems centered on implicit data. Because the training
set cannot be considered sparse, looping over each single
training case—as gradient descent does—would not be
practical. ALS can efficiently handle such cases.10

ADDING BIASES
One benefit of the matrix factorization approach to col-

laborative filtering is its flexibility in dealing with various
45AUGUST 2009

data aspects and other application-specific requirements.
This requires accommodations to Equation 1 while staying
within the same learning framework. Equation 1 tries to cap-
ture the interactions between users and items that produce
the different rating values. However, much of the observed
variation in rating values is due to effects associated with
either users or items, known as biases or intercepts, indepen-
dent of any interactions. For example, typical collaborative
filtering data exhibits large systematic tendencies for some
users to give higher ratings than others, and for some items
to receive higher ratings than others. After all, some products
are widely perceived as better (or worse) than others.

Thus, it would be unwise to explain the full rating value
by an interaction of the form qi

Tpu. Instead, the system tries
to identify the portion of these values that individual user or
item biases can explain, subjecting only the true interaction
portion of the data to factor modeling. A first-order approxi-
mation of the bias involved in rating rui is as follows:

 bui = + bi + bu (3)

The bias involved in rating rui is denoted by bui and ac-
counts for the user and item effects. The overall average
rating is denoted by ; the parameters bu and bi indicate
the observed deviations of user u and item i, respectively,
from the average. For example, suppose that you want
a first-order estimate for user Joe’s rating of the movie
Titanic. Now, say that the average rating over all movies, ,
is 3.7 stars. Furthermore, Titanic is better than an average
movie, so it tends to be rated 0.5 stars above the average.
On the other hand, Joe is a critical user, who tends to rate
0.3 stars lower than the average. Thus, the estimate for
Titanic’s rating by Joe would be 3.9 stars (3.7 0.5 0.3).
Biases extend Equation 1 as follows:

r̂ui
= + bi bu qi

Tpu (4)

Here, the observed rating is broken down into its four
components: global average, item bias, user bias, and user-
item interaction. This allows each component to explain
only the part of a signal relevant to it. The system learns
by minimizing the squared error function:4,5

min
* * *, ,p q b

(,)u i

(rui bu bi pu
Tqi)

2 +

 (|| pu ||

2 + || qi ||
2 + bu

2 + bi
2) (5)

Since biases tend to capture much of the observed
signal, their accurate modeling is vital. Hence, other works
offer more elaborate bias models.11

ADDITIONAL INPUT SOURCES
Often a system must deal with the cold start problem,

wherein many users supply very few ratings, making it

the extent of regularization and is usually determined by
cross-validation. Ruslan Salakhutdinov and Andriy Mnih’s
“Probabilistic Matrix Factorization”7 offers a probabilistic
foundation for regularization.

LEARNING ALGORITHMS
Two approaches to minimizing Equation 2 are stochastic

gradient descent and alternating least squares (ALS).

Stochastic gradient descent
Simon Funk popularized a stochastic gradient descent

optimization of Equation 2 (http://sifter.org/~simon/
journal/20061211.html) wherein the algorithm loops
through all ratings in the training set. For each given
training case, the system predicts rui and computes the
associated prediction error

eui
def

 rui qi
T pu.

Then it modifies the parameters by a magnitude pro-
portional to in the opposite direction of the gradient,
yielding:

 q q e p qi i ui u i()
 p p e q pu u ui i u()

This popular approach4-6 combines implementation
ease with a relatively fast running time. Yet, in some cases,
it is beneficial to use ALS optimization.

Alternating least squares
Because both qi and pu are unknowns, Equation 2 is not

convex. However, if we fix one of the unknowns, the op-
timization problem becomes quadratic and can be solved
optimally. Thus, ALS techniques rotate between fixing the
qi’s and fixing the pu’s. When all pu’s are fixed, the system
recomputes the qi’s by solving a least-squares problem, and
vice versa. This ensures that each step decreases Equation
2 until convergence.8

While in general stochastic gradient descent is easier
and faster than ALS, ALS is favorable in at least two cases.
The first is when the system can use parallelization. In ALS,
the system computes each qi independently of the other
item factors and computes each pu independently of the
other user factors. This gives rise to potentially massive
parallelization of the algorithm.9 The second case is for
systems centered on implicit data. Because the training
set cannot be considered sparse, looping over each single
training case—as gradient descent does—would not be
practical. ALS can efficiently handle such cases.10

ADDING BIASES
One benefit of the matrix factorization approach to col-

laborative filtering is its flexibility in dealing with various

Netflix faces similar challenges as Xing
1. High	level of sparsity in	matrix
2. Item	v.s User	based filtering

3. People	don‘t like	bad recommendations
after	filtering à Wasting their time	

4. Push	recommondations in	Xing vs.	
Openness to	try new genres using

Netflix

Goal:	Build one algorithm for
the whole world!

