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The Netflix challenge was a price competition starting in 2006 when Netflix was still a video rental service. The
aim of the competition was to outcompete Netflix’s own recommendation algorithm. In 2010 the research group
“BellKor's Pragmatic Chaos” won the competition by using matrix factorization techniques (as presented by
Rainer Gemulla). This poster visualizes the data science process of the recommender algorithm in 2010 with an
emphasis on the challenges for algorithm. And in 2018 many new challenges have occurred. Netflix is now a
global player streaming in 190 countries with 120.000 Million users needing to adjust its algorithm.
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Intuition behind latent factor models (2)
• Does user u like item v?
• Quality: measured via direction from origin (cos\(u, v))

I Same direction æ attraction: cos\(u, v) ¥ 1
I Opposite direction æ repulsion: cos\(u, v) ¥ ≠1
I Orthogonal direction æ oblivious: cos\(u, v) ¥ 0

• Strength: measured via distance from origin (ÎuÎ ÎvÎ)
I Far from origin æ strong relationship: ÎuÎ ÎvÎ large
I Close to origin æ weak relationship: ÎuÎ ÎvÎ small

• Overall preference: measured via dot product (u · v)

u · v = ÎuÎ ÎvÎ u · v
ÎuÎ ÎvÎ = ÎuÎ ÎvÎ cos\(u, v)

I Same direction, far out æ strong attraction: u · v large positive
I Opposite direction, far out æ strong repulsion: u · v large negative
I Orthogonal direction, any distance æ oblivious: : u · v ¥ 0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.

8 / 32

COVER FE ATURE

COMPUTER 44

vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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prove accuracy. Decomposing ratings into distinct terms 
allows the system to treat different temporal aspects sepa-
rately. Specifically, the following terms vary over time: item 
biases, bi(t); user biases, bu(t); and user preferences, pu(t). 

The first temporal effect addresses the fact that an 
item’s popularity might change over time. For example, 
movies can go in and out of popularity as triggered by 
external events such as an actor’s appearance in a new 
movie. Therefore, these models treat the item bias bi as a 
function of time. The second temporal effect allows users 
to change their baseline ratings over time. For example, a 
user who tended to rate an average movie “4 stars” might 
now rate such a movie “3 stars.” This might reflect several 
factors including a natural drift in a user’s rating scale, 
the fact that users assign ratings relative to other recent 
ratings, and the fact that the rater’s identity within a house-
hold can change over time. Hence, in these models, the 
parameter bu is a function of time. 

Temporal dynamics go beyond this; they also affect 
user preferences and therefore the interaction between 
users and items. Users change their preferences over time. 
For example, a fan of the psychological thrillers genre 
might become a fan of crime dramas a year later. Simi-
larly, humans change their perception of certain actors 
and directors. The model accounts for this effect by taking 
the user factors (the vector pu) as a function of time. On 
the other hand, it specifies static item characteristics, qi, 
because, unlike humans, items are static in nature. 

Exact parameterizations of time-varying parameters11 
lead to replacing Equation 4 with the dynamic prediction 
rule for a rating at time t: 

 
r̂ui (t) =  + bi(t) + bu(t) + qi

T pu(t)  (7) 

INPUTS WITH VARYING CONFIDENCE LEVELS 
In several setups, not all observed ratings deserve the 

same weight or confidence. For example, massive adver-
tising might influence votes for certain items, which do 
not aptly reflect longer-term characteristics. Similarly, a 
system might face adversarial users that try to tilt the rat-
ings of certain items. 

Another example is systems built around implicit 
feedback. In such systems, which interpret ongoing 
user behavior, a user’s exact preference level is hard to 
quantify. Thus, the system works with a cruder binary 
representation, stating either “probably likes the product” 
or “probably not interested in the product.” In such cases, 
it is valuable to attach confidence scores with the esti-
mated preferences. Confidence can stem from available 
numerical values that describe the frequency of actions, 
for example, how much time the user watched a certain 
show or how frequently a user bought a certain item. These 
numerical values indicate the confidence in each obser-
vation. Various factors that have nothing to do with user 

difficult to reach general conclusions on their taste. A way 
to relieve this problem is to incorporate additional sources 
of information about the users. Recommender systems can 
use implicit feedback to gain insight into user preferences. 
Indeed, they can gather behavioral information regardless 
of the user’s willingness to provide explicit ratings. A re-
tailer can use its customers’ purchases or browsing history 
to learn their tendencies, in addition to the ratings those 
customers might supply. 

For simplicity, consider a case with a Boolean implicit 
feedback. N(u) denotes the set of items for which user u 
expressed an implicit preference. This way, the system 
profiles users through the items they implicitly preferred. 
Here, a new set of item factors are necessary, where item 
i is associated with xi  R f. Accordingly, a user who 
showed a preference for items in N(u) is characterized by 
the vector

 xi

i N u( )

.

 Normalizing the sum is often beneficial, for example, 
working with 

|N(u)|–0.5 xi

i N u( )

.4,5 

Another information source is known user attributes, 
for example, demographics. Again, for simplicity consider 
Boolean attributes where user u corresponds to the set 
of attributes A(u), which can describe gender, age group, 
Zip code, income level, and so on. A distinct factor vector 
ya R f corresponds to each attribute to describe a user 
through the set of user-associated attributes: 

ya

a A u( )

The matrix factorization model should integrate all 
signal sources, with enhanced user representation: 

r̂ui  
=  + bi + bu + qi

T [pu + |N(u)|–0.5 x yi a

i N u a A u( ) ( )

]    (6)
 
While the previous examples deal with enhancing user 

representation—where lack of data is more common—
items can get a similar treatment when necessary. 

TEMPORAL DYNAMICS 
So far, the presented models have been static. In real-

ity, product perception and popularity constantly change 
as new selections emerge. Similarly, customers’ inclina-
tions evolve, leading them to redefine their taste. Thus, 
the system should account for the temporal effects re-
flecting the dynamic, time-drifting nature of user-item 
interactions. 

The matrix factorization approach lends itself well to 
modeling temporal effects, which can significantly im-
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Star	rating provides better data but	users didn‘t understand it

Copies of algorithm run isolated in	various cultural regions

Recognize users sharing one account!

Using system to	estimate which movies to	buy for how long

Connecting members from different	cultures through taste

For each training
case predict the

error

Modify	
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of gradients

Result:	Minimized
equation
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data aspects and other application-specific requirements. 
This requires accommodations to Equation 1 while staying 
within the same learning framework. Equation 1 tries to cap-
ture the interactions between users and items that produce 
the different rating values. However, much of the observed 
variation in rating values is due to effects associated with 
either users or items, known as biases or intercepts, indepen-
dent of any interactions. For example, typical collaborative 
filtering data exhibits large systematic tendencies for some 
users to give higher ratings than others, and for some items 
to receive higher ratings than others. After all, some products 
are widely perceived as better (or worse) than others. 

Thus, it would be unwise to explain the full rating value 
by an interaction of the form qi

Tpu. Instead, the system tries 
to identify the portion of these values that individual user or 
item biases can explain, subjecting only the true interaction 
portion of the data to factor modeling. A first-order approxi-
mation of the bias involved in rating rui is as follows: 

 bui =  + bi + bu  (3) 

The bias involved in rating rui is denoted by bui and ac-
counts for the user and item effects. The overall average 
rating is denoted by ; the parameters bu and bi indicate 
the observed deviations of user u and item i, respectively, 
from the average. For example, suppose that you want 
a first-order estimate for user Joe’s rating of the movie  
Titanic. Now, say that the average rating over all movies, , 
is 3.7 stars. Furthermore, Titanic is better than an average 
movie, so it tends to be rated 0.5 stars above the average. 
On the other hand, Joe is a critical user, who tends to rate 
0.3 stars lower than the average. Thus, the estimate for 
Titanic’s rating by Joe would be 3.9 stars (3.7  0.5  0.3). 
Biases extend Equation 1 as follows: 

r̂ui  
= + bi  bu  qi

Tpu  (4) 

Here, the observed rating is broken down into its four 
components: global average, item bias, user bias, and user-
item interaction. This allows each component to explain 
only the part of a signal relevant to it. The system learns 
by minimizing the squared error function:4,5

min
* * *, ,p q b

( , )u i

(rui    bu  bi  pu
Tqi)

2 +   
 
     (|| pu ||

2 + || qi ||
2 + bu

2 + bi
2)  (5) 

Since biases tend to capture much of the observed 
signal, their accurate modeling is vital. Hence, other works 
offer more elaborate bias models.11

ADDITIONAL INPUT SOURCES 
Often a system must deal with the cold start problem, 

wherein many users supply very few ratings, making it 

the extent of regularization and is usually determined by 
cross-validation. Ruslan Salakhutdinov and Andriy Mnih’s 
“Probabilistic Matrix Factorization”7 offers a probabilistic 
foundation for regularization. 

LEARNING ALGORITHMS 
Two approaches to minimizing Equation 2 are stochastic 

gradient descent and alternating least squares (ALS). 

Stochastic gradient descent 
Simon Funk popularized a stochastic gradient descent 

optimization of Equation 2 (http://sifter.org/~simon/
journal/20061211.html) wherein the algorithm loops 
through all ratings in the training set. For each given 
training case, the system predicts rui and computes the 
associated prediction error 

eui 
def

 rui  qi
T pu. 

Then it modifies the parameters by a magnitude pro-
portional to  in the opposite direction of the gradient, 
yielding: 

 q q e p qi i ui u i( )
 p p e q pu u ui i u( )

This popular approach4-6 combines implementation 
ease with a relatively fast running time. Yet, in some cases, 
it is beneficial to use ALS optimization. 

Alternating least squares 
Because both qi and pu are unknowns, Equation 2 is not 

convex. However, if we fix one of the unknowns, the op-
timization problem becomes quadratic and can be solved 
optimally. Thus, ALS techniques rotate between fixing the 
qi’s and fixing the pu’s. When all pu’s are fixed, the system 
recomputes the qi’s by solving a least-squares problem, and 
vice versa. This ensures that each step decreases Equation 
2 until convergence.8  

While in general stochastic gradient descent is easier 
and faster than ALS, ALS is favorable in at least two cases. 
The first is when the system can use parallelization. In ALS, 
the system computes each qi independently of the other 
item factors and computes each pu independently of the 
other user factors. This gives rise to potentially massive 
parallelization of the algorithm.9 The second case is for 
systems centered on implicit data. Because the training 
set cannot be considered sparse, looping over each single 
training case—as gradient descent does—would not be 
practical. ALS can efficiently handle such cases.10 

ADDING BIASES 
One benefit of the matrix factorization approach to col-

laborative filtering is its flexibility in dealing with various 
45AUGUST 2009
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