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In many machine learning models, we aim to predict a target 
value. Often, there is a desirable value or range that this 
value can hold (e.g. high risk in the left example). When we 
predict an undesirable value, we are interested why it was 
predicted. For this, explainable models are preferred over, for 
instance, neural networks. At that, it is as crucial to find out, 
what we can change to end up with a desired prediction.
We further refer to this problem as feature correction.

In the examples to the left an right we see an example of 
feature correction. On the left, we updates weight and sugar 
intake, on the right we adjusted oil pressure and electric 
current.
If our model supports gradient update, we can adopt gradient 
descent to find such a feature correction. We can fix the 
parameters and propagate the error terms and derivatives 
back to the inputs.

This  approach does not solve all problems. For one, it cannot 
handle discrete values, whose range needs to be relaxed. 
Second, many models contain features whose value we cannot 
change (e.g. sex in the left example) or we cannot control (e.g. 
outdoor temperature) in the right example. Thus, a model 
incorporate allow additional information, which features may be 
modified during feature correction.

Increase Oil Pressure
Reduce Electric Current

Change outdoor temperature
Change Soil type
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An extension of this 
problem is to associate 
each feature change with 
a cost. Clearly, the cost of 
change heavily varies per 
feature. This introduces 
the new problem of "min-
cost feature correction". 
There we want to find the 
feature correction, which 
is cheaper than all other 
feature corrections.

 In machine learning settings, such as disease predictions, there 
are desirable predictions (healthy) compared to unfavorable ones 
(high risk, sick). Given an unfavourable outcome, we want to 
modify the inputs(features) to avert this prediction. To this end, we 
propose the problem of feature correction. A feature correction 
between two predictions is a change in features, which result in 
the model to switch from the first to the second prediction. To 
account for different financial cost of changing features, we also 
suggest the min-cost feature correction problem .
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Generative Adversarial Networks[3]

Adverarial Patches[4]

[2]

 Create a small patch, that can be added to any image. 
This patch causes a classifier to output a pre-defined 
class
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