
 What is Stream Processing?

Stream processing is a programming paradigm which helps

to fast ingest data from continusly producing data sources,

like IOT devices or click events from a web site.

Among the most used stream processing frameworks are

Apache Spark Streaming, Apache Flink and Kafka Stream. [5]

Multiple applications can access and handle a stream of

information rather than pulling information from a data

warehouse. You can fi lter information, aggregate it in an

application A and process the outcome in another application

B. [3,5]

 What is What is

Streaming
The New Big Data Rock Star

 What is Batch Processing?

Batch processing is a programming paradigm where a set of

data is collected over time and then fed batchwise into ano-

ther system. Analysis is then based on the collected data of

one batch. This introduces a time lag and real time applica-

tions such as analysis application, fraud detection systems

cannot work on the latest data. [3]

Why use Stream?
Stream processing is used in most applications because of

the performance. The data is analysed before it actually is

written down to disk. The latency of batch processing is in

the range of minutes to hours whereas the latency of stream

processing ranges from seconds to milliseconds. [1]

Is Streaming the Future?
Stream processing can scale better with more nodes and

cores. This will have a big impact on future systems as they

will have more rather than faster cores. Also, parallelism will

enable replaying history data through the stream pipeline in

a short time with no need for batch processing. [4,5]

When Use What?
If your data changes slowly while your queries change often

like in analysis and exploration scenarios, batch processing

will fi t the best. If you have fast changing data and slowly

changing queries like in business logic applications, stream

processing will be a good choice [3].

Best of Both Worlds?
The lamda architecture combines real time analytics with

the possibility to persist the raw input data or integrate

an existing data

warehouse by

forking the stream.

One stream is used for stream processing while the other one

is saved to the database. This enables an agile and robust

data engineering process in which all data can be replayed

if an error occurs. However, maintaining two systems and

code bases can be challenging and resource consuming. [4]

Applica on

Sensor

Events Analy cs

Lookups

Queries

Scheduled
computa s

Applica on

Sensor

Events

Applica on

Applica on

Applica on

Stream Processing

SPEED_TABLE

BATCH_TABLE

Figure 1: Flow of stream data to multiple applications transforming the
data and output a new data stream to an analytics tool.

Figure 2: Data is collected in batches and written to a database. Applications then work with the
database. The batches are transformed in scheduled computations introducing a time lag.

Figure 3: Lambda Architecture

Michael Janke References

[1] as presented in Eating News from the Web
 Peter Adolphs, Neofonie
[2] as presented in Queue Mining - Analysis of Clinical Pathways
 Matthias Weidlich, Humboldt Universität zu Berlin
[3] as presented in Modern stream processing with Apache Flink
 Fabian Hueske, data Artisans
[4] Questioning the Lambda Architecture Jay Kreps
 https://www.oreilly.com/ideas/questioning-the-lambda-architecture
[5] Distributed Stream systems Matthias Niehoff
 https://blog.codecentric.de/2017/03/verteilte-stream-processing

IT-Systems-Engineering Master
Ringvorlesung Data Engineering in der Praxis

Hasso Plattner Institute, Potsdam, Germany

E-Mail: michael.janke@student.hpi.de

