Hasso
Plattner
Institut

Digital Engineering * Universitdt Potsdam

PR SO HIA AR it
P a3 B Sasereliiel S
S N By IR St L [L R
- / h
o - e

Git Background—Distributed Version Control

Scalable Software Engineering
WS 2021/22 Enterprise Platform and Integration Concepts &

Image by marie-lyse briffaud on flickr: https://flickr.com/photos/137234632@N06/23403663196 (CC BY-SA 2.0)

Outline THIS IS GIT. IT TRACKS COLLABORATIVE. LORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

| oo HouDouEUSE IT7
NO IDEA. JUST MEMORIZE. THESE. SHELL

m Design of VCS COPNDS D TYPE =Pl

m What happens under the hood? IF YOU GET ERRORS, SAVE. YOUR LJORK

m Collaboration in teams ELSEWHERE, DELETE THE. PROJECT)
AND DOWNLOAD A FRESH COPY.

\

1]

Scalable Software Engineering https//xkcdcom/1597/

Centralized vs Distributed VCS ﬂ

U Central
U Repository wo Repository

Checkout //
Commit updates - Push / Pull -
VS. —

@ _ /S
Workmg -m Working —{)
Copy Working Copy (‘ﬂm
Copy
Client-Server Peer-to-Peer Commit

Scalable Software Engineering

Centralized vs Distributed VCS

Using Version Control Systems
m Distributed VCS mostly used like centralized ones

0 One peer who is always online and acts as central (git)hub
m Local commits are blessing and curse

0 Commits can be made while offline

0 Higher chances of code diverging

Scalable Software Engineering

Git Objects

Blob Tag

m Content of a file m Reference to other object Blob el
m Nothing else

Tree

Tree

m Folder structure, file names

97b49d4c943e3715fe30f141cc6f27a8548ceele

m References Blobs

Commit msg: initial
m References Tree object Commit I 97b49d4c943e3715F...
m Metadata
m 0..* parent commits a3768903ca03f7ccch3c6b6f474f88f8e¢9a3bb5b

Scalable Software Engineering https://git-scm.com/book/en/v2/Git-Internals-Git-Objects 5

Git Local File Status Lifecycle

Untracked | Unmodified

Scalable Software Engineering

Add the file

Edit the file

Remove the file

Stage the file

Commit

Short git status:

git status -s

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Commit Parent

msg: lllnitial”

S git commit -m “v 2.1”

Scalable Software Engineering

Branches & Tags

msg: “Initial”

S git commit -m “v 2.1”

Scalable Software Engineering 8

Head

III

msg: “Initia

Scalable Software Engineering 9

Detached Head

S git checkout v2.0

msg: “Initial”

Scalable Software Engineering

10

Detached Head

S git checkout v2.0
S git commit -m “v 2.x”

msg: “Initial”

Scalable Software Engineering

11

Detached Head

S git checkout v2.0
S git commit -m “v 2.x”
S git checkout main

List all commits:

git reflog

msg: “Initial”

Scalable Software Engineering 1 2

Fast-forward

S git merge branch_b

HEAD

msg: “Initial”

Scalable Software Engineering

msg: “Fix A”

branch_b

13

Merge

S git merge branch_b

HEAD

III

msg: “Initia

Scalable Software Engineering

msg: “Fix b”

branch_b

msg: “merge
branch_b”

14

Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

8 624
using Git

Collaboration

Scalable Software Engineering
WS 2021/22 Enterprise Platform and Integration Concepts

Image by ripster55 on flickr: https://flickr.com/photos/ripster55/5269211074/ (CC BY 2.0)

Collaboration

/

alice

origin

Scalable Software Engineering

16

PUSh / origin\

<alice creates commit b> commita RO main |

alice$S git push origin main

IGE_I

commitl /

alice bob

.
) s N

commit a commit a L main

/ . 17

IGH_I‘I

Scalable Software Engineering

Fetch

bobS git fetch

Scalable Software Engineering

alice

origin

-

Unreferenced
commit

commit b <=

commit a

v

commitl

v

~

commit b

=N
=

commit a

N
i

,/

origin/main

bob

~

commit a < main

v
-

18

Pu ” / origin
=N

v

bobsS git fetch

v

bob$S git merge origin/main fetch + merge

= pull

Unreferenced
commit
\ commitl /

alice bob

4 N

origin/main commit b

commit b €
v

commit a commit a < main
m
commit v

L e _ Y,
Scalable Software Engineering 1 9

Push with Conflic);s

alice$S git push origin main

| [rejected] main -> main
(non-fast-forward)

origin

Scalable Software Engineering

alice

~

Feature 2 <=

commit a

<
6I

commitl

/

~

-

-

Feature 1

commit a

commitl

-
~

v

O

ob

-

-

~

Feature 2 =

commit a

<
6I

commitl

/

20

Push --force

main =

alice$S git push --f origin main

origin

Scalable Software Engineering

21

Commit = Pull = I}u&h

aliceS git

pull origin

-

origin

(-I

commit a

commitl

~

Feature 2 <=

/

alice
Merge
v v

_ Feature 1

commit a

Scalable Software Engineering

\ commitl /

O

-

-

commit a

commitl

Feature 2

v
v

/

<

/

22

Branching Models

Structuring your code and development
m Many ways to structure branches

m Branching model should be agreed upon by participants
m Merging efforts increase with increased code divergence

Recommendations:
m Never merge in main or release branches
m Try to not commit unfinished/broken code in shared branches

Scalable Software Engineering https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

@Buser story

23

Understanding Changes

m git log
0 List commits reachable by following the parent links from the current commit
0 Make it visual: git log --graph --decorate --oneline
m git diff
0 Show line changes between commits
0 Show changes in staged files: git diff --cached
m git blame
0 Show what revision and author last modified
each line of a file

Scalable Software Engineering

24

Learn some more

Learn & practice Git

Read the README.md for instructions or view them in browser:
http://gitexercises.fracz.com/e/commit-one-file

~/exercises

$ git status -s
A.tXt
B. EXE

. Right side
~/exercises H
$ g1t add A.txt

ice-cream

Interactive git exercises and training (go find some more), e.g.
m https://gitexercises.fracz.com/

m https://github.com/benthayer/git-gud

m https://ohmygit.org

m https://learngitbranching.js.org/?locale=de DE

Scalable Software Engineering

https://gitexercises.fracz.com/
https://github.com/benthayer/git-gud
https://ohmygit.org/
https://learngitbranching.js.org/?locale=de_DE

Summary E

Types of VCS Git internals Collaboration
m (De)centralized m Git Objects m Synchronizing repos
m Usage m File Lifecycle m Push —force
m (Dis)advantages m Detached Head m Branching models
m Fetching & Merging m Tracing Changes

Software Engineering II 2 6

