
Software Reviews

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2021/22

Image courtesy @EthicsInBricks in Twitter: https://twitter.com/EthicsInBricks/status/1430556314556669956 (with permission)



Scalable Software Engineering

Software Reviews

Principles
■ Generate comments on software
■ Several sets of eyes check
■ Emphasis on people over tools
■ Lower cost of fixing defects in review than in the field

2

“a software product is [examined by] project personnel, 
managers, users, customers, user representatives, or 
other interested parties for comment or approval
—IEEE1028 ”



Scalable Software Engineering

■ Improve code quality
(e.g. maintainability, readability, uniformity)

■Discuss alternative solutions,
generate ideas for the future

■ Knowledge transfer regarding codebase
■ Increase sense of Collective Code Ownership
■ Find defects
■ Check compliance (e.g. legal)

Software Reviews

3

Image by Glen Lipka: http://commadot.com/wtf-per-minute/

Motivations



Scalable Software Engineering

Types of Reviews [IEEE1028-2008]

Inspections
■ Identify software product anomalies
■ Since the 1970’s, aka “Fagan Inspection”
■ Formal process, can involve hard copies of the code and documents
■ Review team checks artifacts independently before,

consolidation meeting with developers

4Fagan inspection basic model: https://en.wikipedia.org/wiki/Fagan_inspection#/media/File:Fagan_Inspection_Simple_flow.svg (CC0)

Preparation

https://en.wikipedia.org/wiki/Fagan_inspection


Scalable Software Engineering

Focus in Reviews

Reviewed first Reviewed later
Implementations of complex algorithms Well-understood problem domains
Code where faults or exceptions lead to 
system failure

Code which won’t break the functionality if 
faults occur 

Parts using new technologies/libraries Parts similar to those previously reviewed
Parts constructed by inexperienced team 
members

Reused and already reviewed parts

Code that features high code churn Code with few changes

5

Reviewed first
Implementations of complex algorithms
Code where faults or exceptions lead to 
system failure
Parts using new technologies/libraries
Parts constructed by inexperienced team 
members
Code that features high code churn



Scalable Software Engineering

Change-based Code Reviews

Different Review Approach
■ Lightweight process
■ Size of reviewed code is (should be) small
■ Performed regularly and quickly,

mainly before code enters main branch

Shift in Focus
■ From defect finding to group problem solving
■ Prefer discussion and fixing code over reporting defects

6

[Rigby’13]
[Bacchelli‘13]



Scalable Software Engineering

Code Review Goals

7http://blakesmith.me/2015/02/09/code-review-essentials-for-software-teams.html

Hierarchy of Review Goals
■ Build a shared mental model
■ Ensure sane design
■ Find defects vs. understanding code

Style

Identify
defects
Design 

discussion

Correct solution

Mental alignment

Least
important

Most
important



Scalable Software Engineering

Recent Research

■ Code review coverage and review participation share
significant link with software quality

■ Most comments concern code improvements,
understandability, social communication

■ Only ~15% of comments indicate possible defects
■ Developers spend approximately five hours per week 

(10-15% of their time) in code reviews

8

[Bosu’17]
[McIntosh’14]
[Bacchelli ‘13]



Scalable Software Engineering

Recent Research

Scalable Software Engineering

9

[Bacchelli ‘13]

[Bosu’17]

Expectations Empirical study outcomes

Expectations 
4 years later

Maintainability and code improvements
identified as most important aspects of 
modern code reviews



Scalable Software Engineering

Challenges of Change-based Review
■ Delay the shipping of implemented features
■ Force reviewers to switch context
■ Little feedback for legacy code

■ Overloading (too many files),
developers create large patches

■ Overcrowding (too many reviewers),
assigning too many reviewers may
lower review quality

10Image: https://devops.com/dark-side-infrastructure-code/



Scalable Software Engineering

Post-commit Code Review

Review after committing to VCS 
■ pull requests are one(!) way of doing this
■ Used by most projects on GitHub and BitBucket

11

■ Developers commit and push 
continuously

■ Team members see code changes 
in VCS and can adapt their work

■ Chance of unreviewed code in repository
□ Need to/can set restrictions

■ Requires branches or similar to work 
effectively

+ –

https://www.devart.com/review-assistant/learnmore/pre-commit-vs-post-commit.html



Scalable Software Engineering

Pre-commit Code Review

Review before committing to version control system
(e.g. using mailing lists, Gerrit, Crucible tools)
■ Used by e.g. Linux Kernel, Google

12

■ No code enters unreviewed
■ Code quality standards met 

before commit, no 'fixes'
■ No repository access for reviews 
■ Flexible definition of code to review 

(set of commits, branch, some files)

■ Reviewing all changes takes time
■ Another complex system to handle
■ Context switch to another system

+ –



Scalable Software Engineering

Reviewer Assignment

Usually, two reviewers find optimal number of defects

Reviewer candidates
■ People who contributed changes (find defects)
■ New developers (transfer knowledge)
■ Team members with a small review queue
■ Reviewers with different fields of expertise

13[Rigby’13]Image: http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-review.html



Scalable Software Engineering

Review Content

14Images: http://atlassianblog.wpengine.com/developer/assets_c/2011/07/mt-perloc-thumb-500x263-7290.png
https://twitter.com/girayozil/status/306836785739210752?lang=en

■ Size of artifact to review matters
■ Semantically coherent changes easier 

to review than interleaved concerns



Scalable Software Engineering

Code Review In Industry

Microsoft
■ Median completion times: 14.7h (Bing), 18.9h (Office), 19.8h (SQL Server)
■ Median number of reviewers: 3-4
■ Developers spend 4-6 hours per week on reviews

Google
■ Mandatory review of every change 
■ Median completion times: 15.7h (Chrome), 20.8h (Android)
■ Median patch size: 78 lines (Chrome), 44 lines (Android)
■ Median number of reviewers: 2

15

[Rigby’13]



Scalable Software Engineering

Code Review Tools

Gerrit (https://www.gerritcodereview.com/)
■ Integrated with Github: http://gerrithub.io
■ Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.
■ Plug-ins available (e.g. EGerrit for Eclipse)

FishEye (https://www.atlassian.com/software/fisheye/overview)
■ Visualize, Review, and organize code changes

GitHub Pull Requests
■ Branches with comments and checks

16

http://gerrithub.io
https://www.atlassian.com/software/fisheye/overview


Scalable Software Engineering

Software Review Helpers

■ Testing checks functionality via dynamic analysis
■ Code reviews manually check code quality via static analysis

Automated static analysis (linters)
■ Code coverage (e.g. SimpleCov https://github.com/simplecov-ruby/simplecov)
■ Coding conventions (e.g. RuboCop, https://github.com/rubocop-hq/rubocop )
■ Code smells (e.g. reek https://github.com/troessner/reek)

17



Scalable Software Engineering

Summary

18

Software Reviews
■Not a new thing, good reasons to do them (goals & motivation)
■ Focus of reviews
■Different types of review techniques
□ Software Inspections
□ Change-based code reviews

■ Reviewer assignment & best practices
■ Reviews in industry



Scalable Software Engineering

References

[Bosu’17] Bosu, Amiangshu, et al. "Process Aspects and Social Dynamics of 
Contemporary Code Review: Insights from Open Source Development and Industrial 
Practice at Microsoft." TSE 43.1 (2017): 56-75.
[McIntosh’14] McIntosh, Shane, et al. "The impact of code review coverage and code 
review participation on software quality: A case study of the qt, vtk, and itk projects." 
MSR’14.
[Rigby’13] Rigby, Peter C., and Christian Bird. "Convergent contemporary software 
peer review practices." FSE’13.
[Bacchelli‘13] Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and 
challenges of modern code review." ICSE’13.
[Feitelson‘13] Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck. "Development 
and deployment at facebook." IEEE Internet Computing 17.4 (2013): 8-17.

19


