Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

o ,. >
. LA
- l

=4 |

id
M‘

Advanced Testing Concepts (in Ruby on Rails)

Scalable Software Engineering
WS 2021/22 Enterprise Platform and Integration Concepts

Image by Paul Albertella on flickr: https://www.flickr.com/photos/paulspace/10427471016 (CC BY 2.0)

Agenda

Advanced Concepts & Testing Tests
m Setup and Teardown
m Test Data
m Test Doubles

Scalable Software Engineering

Setup and Teardown: RSpec “ﬂ

As a developer using RSpec
| want to execute code before and after test blocks
So that | can control the environment in which tests are run

before(:each) # run before each test block
before(:all) # run one time only, before all of the examples in a group

after(:each) # run after each test block
after(:all) # run one time only, after all of the examples in a group

Scalable Software Engineering

Typical Test Run

For each file For each test

Initial Database
preset

What do you expect is
regularly done in setup

and teardown steps?

Run test

Run

teardown

/ Database
reset

Scalable Software Engineering Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf 4

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Agenda

Advanced Concepts & Testing Tests
m Setup and Teardown
m Test Data
m Test Doubles

Scalable Software Engineering

Isolation of Test Cases

Independent Tests

m Bug in a model should lead to
failures in tests related to this model only

m Allow localization of bug

Scalable Software Engineering Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests 6

Isolation of Test Cases

Achieving Test Case Isolation

m Don’t write complex tests

m Don’t share complex test data
m Don’t use complex objects

Scalable Software Engineering Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests 7

Test Data Overview

Two main ways to provide data to test cases:

Fixtures

Il

m Fixed state at the beginning of a test

m Assertions can be made against this state
Factories - -

m Blueprints for models .
m Used to generate test data locally in the test

Scalable Software Engineering

Fixture Overview

Fixtures for testing

m Fixed Sample data/objects
m Populate testing database with predefined data before test run
m Stored in database independent files (e.g. test/fixtures/<name>.yml)

test/fixtures/users.yml

david: # Each fixture has a name
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development

Ssteve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: Front-end engineer

m http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

Scalable Software Engineering m http://guides.rubyonrails.org/testing.html 9

http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html
http://guides.rubyonrails.org/testing.html

Drawbacks of Fixtures

Fixtures are global

m Only one set of data, every test has to deal with all test data
Fixtures are spread out

m Own directory

m One file per model -> data for one test is spread out over many files

m Tracing relationships is challenging
Fixtures are distant

m Fixture data is not immediately available in the test

m expect(users(:ernie).age + users(:bert).age).to eq(20) #why 20?
Fixtures are brittle

m Tests rely on fixture data, they break when data is changed

m Data requirements of tests may be incompatible

Scalable Software Engineering

10

Test Data Factories

Test data should be
m Local: Defined as closely as possible to the test
m Compact: Easy and quick to specify; even for complex data sets
m Robust: Independent from other tests

One way to achieve these goals: Data factories

Scalable Software Engineering

Defining Factories

This will guess the User class
FactoryBot.define do
factory :user do
first name { "John" }
last name { "Doe" }
admin false
end

This will use the User class

(Admin would have been guessed)

factory :admin, class: User do
first name { "Admin" }
last name { "User" }
admin true

end

end

m http://www.rubydoc.info/gems/factory bot/file/GETTING STARTED.md

Rails library: FactoryBot
m Rich set of features around
0 Creating objects
0 Connecting objects

m Rails automatically loads

spec/factories.rb and
spec/factories/*.rb

Scalable Software Engineering

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Using Factories

m Different strategies: build, create (standard), attributes for

Returns a User instance that's not_ saved
user = build(:user)

Returns a _saved User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes for(:user)

Passing a block will yield the return object

create(:user) do |user|
user.posts.create(attributes for(:post))

end

m http://www.rubydoc.info/gems/factory bot/file/GETTING STARTED.md

Scalable Software Engineering

13

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Factories: Attributes

Lazy attributes

factory :user do
activation code { User.generate activation code }
date of birth { 2l.years.ago }

end The opposite of lazy

is eager evaluation

Dependent attributes
factory :user do

first name { "Joe" }

email { "#{first_name}.#{last name}@example.com"”.downcase }
end

override the defined attributes by passing a hash/dict
create(:user, last name: "Doe").email
=> "joe.doe@example.com"”

m http://www.rubydoc.info/gems/factory bot/file/GETTING STARTED.md 14

Scalable Software Engineering

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Factories: Associations

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last name: ”Different”
End

Builds and saves a User and a Post
post = create(:post)

post.new reconrd? # => false
post.author.new _record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)

post.new reconrd? # => true

post.author.new _record? # => false (why 1is this required?)

m http://www.rubydoc.info/gems/factory bot/file/GETTING STARTED.md 15

Scalable Software Engineering

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Factories: Inheritance & Sequences

The title attribute is required
factory :post do

Title { "A title" } # In-line sequence for a factory
End factory :user do
sequence(:email) {|n| “u#{n}@example.com"}
Approved posts include an extra field end

factory :approved post, parent: :post do
approved true
end

Custom code can be
injected via ,callbacks”

m http://www.rubydoc.info/gems/factory bot/file/GETTING STARTED.md

Scalable Software Engineering

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Agenda

Advanced Concepts & Testing Tests
m Setup and Teardown
m Test Data
m Test Doubles

Scalable Software Engineering

19

Isolation of Test Cases

Achieving Test Case Isolation

m Don't write complex tests

m Don’t share complex test data
m Don’t use complex objects

Scalable Software Engineering

Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

20

Test Doubles

Objects that stand in for the real thing in a test
m Generic term for range of testing techniques, think “stunt double”
m Purpose: simplify automated testing

Used when

m Real object is unavailable

m Real object is difficult to access or trigger

m Real object is slow or expensive to run

m An application state is required that is challenging to create

21

Scalable Software Engineering

Ruby Test Double Frameworks

Many (Ruby) frameworks available:

m RSpec-mocks (http://github.com/rspec/rspec-mocks)
m Mocha, FlexMock

®» We recommend RSpec-Mocks. Shares syntax with RSpec

require("rspec/mocks/standalone")
imports the mock framework.

Useful for exploring in rails console.

Overview: https://www.ruby-toolbox.com/categories/mocking

22

Scalable Software Engineering

http://github.com/rspec/rspec-mocks
https://www.ruby-toolbox.com/categories/mocking

Possibilities of Test Doubles

Verify behavior during a test
m Usually: test system state after a test
0 Only result of code are tested
0 Intermediate steps not considered
m Test doubles: Allow testing detailed system behavior
0 E.g. How often a method is called, in which order, with which parameters

Scalable Software Engineering

23

Stub Testing Technique

Stubs: Provide canned responses to specified messages
m Returns predefined value if called
m No method call on the real object

m Strict by default (error when messages received that have not been allowed)

dbl = double(“user”)

allow(dbl).to receive messages(name: “Fred”, age: 21)
expect(dbl.name).to eq(“Fred”) #not really a good test :)
dbl.height #raises error (even if original object had property)

m Alternatively, if all method calls should succeed: Null object double

dbl = double(“user”).as_null object
dbl.height.in _cm # this is ok! Returns itself (dbl)

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/null-object-doubles

Scalable Software Engineering

24

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/null-object-doubles

Mock Testing Technique

Mocks: Define messages that must be received (or not received)

m Demands that mocked methods are called for test pass

book = double("book"™, title: "The RSpec Book")
expect(book).to receive(:open).once # 'once' is default
book.open # this works

book.open # this fails

m Or as often as desired

user = double("user"

expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level up).at least(4).times
expect(user).to receive(:notify).at most(3).times

m |f test ends with expected calls missing, it fails!
® Mocks are stubs with attitude, mocks can fail tests

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/expecting-messages

Scalable Software Engineering

25

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/expecting-messages

Spy Testing Technique “ﬂ

Spies: Record received messages, then assert they have been received
m Alternate way of using test doubles in Given-When-Then structure
m Allows asserting that messages have been received at the end of test

dbl = double(“user”).as null object # same as spy("user"
dbl.height
dbl.height

expect(dbl).to have received(:height).at least(2).times

This pattern for
tests is also called

arrange-act-assert

m Alternatively: spy on specific messages of real objects (partial doubles)

user = User.new

allow(user).to receive(:height) # Given a user
user.measure_size # When I measure the size
expect(user).to have received(:height) # Then height is called

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/spies
Scalable Software Engineering m https://thoughtbot.com/blog/a-closer-look-at-test-spies 26

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/spies
https://thoughtbot.com/blog/a-closer-look-at-test-spies

Partial Test Doubles

Extension of real object instrumented with test-double behavior
m Mix real object and stubbed/mocked methods
m Only expensive methods might need replacing

s = "a user name" # s.length == 11

allow(s).to receive(:length).and return(9001)

expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/partial-test-doubles 27

Scalable Software Engineering

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/partial-test-doubles

Expecting and Raising Errors

Testing exception handling

m A test double can raise an error when it receives a message
m Real error can be hard to provoke

m Test various types of exceptions: and_raise(ExceptionClass)

dbl = double()
allow(dbl).to receive(:foo).and raise("boom™)
dbl.foo # This produces:

Failure/Error: dbl.foo
RuntimeError:
boom

4

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/configuring-responses/raising-an-error 29

Scalable Software Engineering

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/configuring-responses/raising-an-error

Verifying Doubles

Check that methods being stubbed are present on underlying object
m Stricter alternative to normal doubles

m Confidence that doubles are not a complete fiction

m Verify that provided arguments are supported by method signature

class Post

attr_accessor :title, :author, :body
end

post = instance_double("Post") # reference to the class Post
allow(post).to receive(:title)
allow(post).to receive(:message).with (‘a msg’) # this fails (not defined)

m https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/verifying-doubles/using-an-instance-double

Scalable Software Engineering

30

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/verifying-doubles/using-an-instance-double

Test Doubles Pro and Contra

Disadvantages

m Test doubles must accurately model real object behavior

m Risk testing values set by test doubles

m Run out of sync with real implementation, brittle while refactoring

Advantages
m Allow tests focused on behavior
m Speed (e.g. not having to use an expensive database query)

m Isolation of tests minimize the amount of
test doubles

Best practice: try to

Scalable Software Engineering 3 1

Summary

Test run steps
m Setup & teardown
m Test run process
m Test Data
0 Guiding principles
0O Fixtures vs factories

Scalable Software Engineering

Test doubles
m Use cases & goals
m Mocks
m Stubs

m Spy
m Pros & Cons

32

Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

Advanced Tests & Testing Tests

Scalable Software Engineering
WS 2021/22 Enterprise Platform and Integration Concepts

Image by stavos on flickr: https://flickr.com/photos/stavos52093/20189988408/ (CC-BY-NC-ND 2.0)

Code Coverage

Most commonly used metric for evaluating test suite quality
m Test coverage = executed code during test suite run + all code * 100
O e.g. 85loc/ 100 loc = 85% test coverage

Line coverage
m Absence of line coverage indicates potential problems
m (High) line coverage means very little

m In combination with good testing practices, coverage might say
something about test suite reach

m Circa 100% test coverage is a by-product of BDD

Scalable Software Engineering

35

Measuring Code Coverage

Different approaches to measure code coverage
m Line coverage
m Branch coverage

Tools
m SimpleCov: coverage tool for Ruby
m Uses line coverage by default

if (i > 9); i += 1 else i -= 1 end

®» 100% line coverage even if one branch is not executed

Scalable Software Engineering 3 6

Test Tips

Independence
m Of external test data
m Of other tests (and test order)

Repeatability
m Same results each test run
m Potential Problems
0 Dates, e.g. Timecop (https://github.com/travisjeffery/timecop)

0 Random numbers
0 Type and state of test database
0 Type of employed library depending on system architecture

Scalable Software Engineering

37

https://github.com/travisjeffery/timecop

Test Tips

Clarity
m Test purpose should be immediately clear
m Tests should be small, simple, readable
m Make it clear how the test fits into the larger test suite
Worst case:

it "sums to 37" do
expect(37).to eq(User.all total points)
end

Better:

it "rounds total points to nearest integer" do
User.add points(32.1)
User.add points(5.3)
expect(User.all total points).to eq(37)

end

Scalable Software Engineering

38

Test Tips

Conciseness

m Use the minimum amount of
code and objects

m But: Clear beats short

m Writing the minimum required
amount of tests for a feature

-> Test suite will be faster

def assert user level(points, level)
user = User.create(points: points)
expect(level).to eq(user.level)
end

it test user point level
assert _user_level(@, "novice"
assert _user_level(1, "novice"
assert _user_level(500, "novice"
assert_user level(501, "apprentice")
assert_user level(1001, "journeyman")
assert_user level(2001, "guru")
assert _user_level(nil, "novice"

end

Scalable Software Engineering Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions.pdf

39

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Conciseness: #Assertions per Test

If a single model method call results in many model changes:

m High number of assertions -> High clarity and cohesion
m High number of assertions -> Low test independence

m Use context & describe and have few assertion per test

Scalable Software Engineering

Test Tips

Robustness
m Underlying code is correct -> test passes
m Underlying code is wrong -> test fails
m Example: view testing

describe "the signin process", type: :feature do
it "signs me in (text version)" do
visit '/dashboard’
expect(page).to have content “My Projects”
end
version below is more robust against text changes
it "signs me in (css selector version)" do
visit '/dashboard’
expect(page).to have css "h2#projects”
end
end

Scalable Software Engineering

41

Test Tips

Robustness
m Reusable code increases robustness
m E.g. constants instead of magic numbers

def assert user level(points, level)
user = User.build(points: points)
expect(user.level).to eq(level)
end

def test user point level
assert_user_level(User::NOVICE THRESHOLD + 1, "novice"
assert_user level(User::APPRENTICE THRESHOLD + 1, "apprentice™)
Hoo..

end

m Be aware of tests that always pass regardless of underlying logic

m Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions.pdf 42

Scalable Software Engineering

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Manual Fault Seeding

Conscious introduction of faults into the program
m Run tests
m Minimum 1 test should fail

If no test fails, then a test is missing
m Possible even with 100% line coverage
m Asserts functionality coverage

Scalable Software Engineering 44

Mutation Testing

Mutant: Modified version of the program with small change

m Tests correctly cover code -> Test should notice change and fail

— Program
m pass for Source

Test mutate
Cases

Tests fail for
Mutants /
N\

next_month:

it month > 12 then
year += month / 12
month = month % 12

end

1T not month > 13 then
year -= month / 12

o)

end

m Mutation Coverage: How many mutants did not cause a test to fail?

Asserts functionality & behavior coverage
0 For Ruby: Mutant (https://github.com/mbj/mutant)

Scalable Software Engineering

45

https://github.com/mbj/mutant

Metamorphic Testing

When testing, often hard to find test oracle

m Establish whether a test has passed or failed

m Require understanding of exact input-output-relation

m May be more convenient to reason about relations between outputs

Compare outputs of system-under-test

m Describe inherent behavior of the program
m No need to know exact outputs (in advance)
m Test the invariants: f(x) < f(x+1)

Scalable Software Engineering

Metamorphic Testing Example

Scenario: Rendering lighting in a digital scene
m Hard to verify all pixels have correct color
m Use relations of outputs for test cases

Test: Position of light source changes
m Points closer to light source will be brighter
0 Exception: White pixels
m Points further away from light source will be darker
0 Exception: Black pixels
m Points hidden behind other objects don't change brightness

Scalable Software Engineering

47

Fuzzing / Fuzz Testing

Automated software testing technique
m Provide randomized or invalid inputs to a program
m Capture exceptions, e.g. crashes, failing assertions, or memory leaks
m Expose corner cases that are unhandled

Program inputs

m Input that passes the input parser, but is strange enough for unusual behavior
m Input that crosses a system boundary, e.g. user input or network packets

Scalable Software Engineering

48

Further Reading E

m http://betterspecs.org — Collaborative RSpec best practices documentation effort
m Everyday Rails Testing with RSpec by Aaron Sumner, leanpub

m The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends by
David Chelimsky et al.

Scalable Software Engineering 4 9

Summary

Advanced Tests & Testing Tests
m Test Coverage
m Test Tips
m Fault Seeding
m Mutation Testing
m Metamorphic Testing

Scalable Software Engineering

50

