
Application Deployment & DevOps

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2021/22

Image by Moritz from flickr: https://flickr.com/photos/nolnet/8441822612 (CC BY-NC 2.0)



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

2



Scalable Software Engineering 

Infrastructure as Code enables DevOps teams to test applications in 
production-like environments early in the development cycle.

Terms
■ Provisioning:

Creating the systems that you’ll need to manage later on
■ Configuration management:

actually making systems useful, install and configure them
■ Deployment:

Getting the work we’ve done onto the systems in question

IaC and DevOps

3
Source: https://archive.fosdem.org/2018/schedule/event/deployment_provisioning_orchestration/



Scalable Software Engineering 

Development vs. Operations

4

Users

Production
Current Release

Dev A

Dev B

Repository
All Code

Development
Working Copy

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Scalable Software Engineering 

Problems
■ Software needs to be operated, run in production, and maintained
□ Developers vs. Admins

■ Short development and deployment cycles
■ Maintain quality standards

Development & Operations

5

Customer Devs Admins

Agile DevOps

“Agile for deployment”

DevOps
■ Formalized process for deployment
■ Focus on communication, collaboration, 

and integration between Dev and Ops



Scalable Software Engineering 

Definition
■ Fairly recent trend
■ "[...] no uniform definition for […] DevOps.

[…] people use their own definitions" [Dyck, 2015]
■ "There is no consensus of what concepts DevOps covers,

nor how DevOps is defined" [Erich, 2017]

■ Best practices to
shorten the application development life cycle

DevOps

6
[Dyck, 2015] Dyck, Andrej; Penners, Ralf; Lichter, Horst (19 May 2015). "Towards Definitions for Release Engineering and DevOps".

Proceedings of the 2015 IEEE/ACM 3rd International Workshop on Release Engineering. IEEE.

[Erich, 2017] Erich, F.M.A.; Amrit, C.; Daneva, M. (June 2017). "A Qualitative Study of DevOps Usage in Practice". Journal of Software: Evolution and Process. 29 (6).

Analysis

Design

ImplementationMaintenance

Planning

Maintenance



Scalable Software Engineering 

Not DevOps

7

Dev A

Dev B

Users

Repository
All Code

Development
Working Copy

Production
Current Release

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Scalable Software Engineering 

Release
■ Planned state of the application
■ Set of requirements
■ Examples
□ Next big version with new shiny features
□ Urgent hotfix
□ Anything in-between

Version
■ Could be anything
■ A release has a version number

Terminology

8



Scalable Software Engineering 

Build
■ Attempt to implement a release
□ Snapshot of application

■ Often the output of the build tool
□ Not: the build script/tool/process

■ Version number is 
“<Release Number>.<Build Number>”

Terminology

9



Scalable Software Engineering 

Environment
■ A system on which the application 

can be deployed and used

To promote
■ To deploy a build on the next environment

To release
■ To promote a build to production
■ Thereby finishing the release

Terminology

10



Overview of Environments

Development
managed by developers

Development
■Where the developers work
■One per developer (if possible)

Integration
■Runs all tests
■A try-out version

Quality Assurance
■Professional manual testing

Operations
managed by admins

Staging
■ Clone of production system
■ Final rehearsal

11

Production
■ The live system
■ Failures are expensive here



Scalable Software Engineering 

Example

12

Release 3.7

Integration Quality Assurance Staging Production

Build 5Build 5 Build 5

Build 1
Build 2Build 3

Build 4



Scalable Software Engineering 

Example

13

Release 3.7

Integration Quality Assurance Staging Production

Build 5

Build 1
Build 2Build 3

Build 4

Build 5Build 5

Build 6Build 7Build 8

Build 7

Developers
changing Code

Build 6



Workflow

14

Promote & Test

Define Release

Promote & Test

Change Code

Assemble Build

Promote & Test Release
AcceptReject



Scalable Software Engineering 

DevOps

15

Dev A

Dev B

Admins Users

Integration
Latest Build

Repository
All Code Quality Assurance

Latest Build/
Release Candidate

Staging
Current Release/
Release Candidate

Production
Current Release

Quality 
Assurance

Project Team/
Project Lead

Development Operations

Development Data
Test Data
Production Data

Code
Build

Development
Working Copy

Development
Working Copy



Scalable Software Engineering 

Builds are immutable
■ If changed, previous testing was pointless
■ Even the smallest change has to go through all environments

Many systems required
■ Each environment has to be maintained
■ Automation?

Deployment overhead
■ Manual steps are opportunities for human failure
■ Automation?

Implications

16

Remainder of this lecture



Application Hosting

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2021/22

Image by @EthicsInBricks on Twitter: https://twitter.com/EthicsInBricks/status/1431239790897385477 (with permission)



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

18



Scalable Software Engineering 

Choice of hosting options is driven by a variety of parameters
■ Initial setup effort, cost, and required expertise
■ Operational costs and effort
■ Targeted service level agreements (SLAs)
■ Legal considerations (data privacy, liability, etc.)

Application Hosting Options

19

Low Effort
Little Control

High Effort
High Control

Own
Datacenter PaaS IaaS Dedicated 

Hosting



Scalable Software Engineering 

Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages
■Minimal effort and knowledge required for setup
■Only platform development knowledge (e.g. Python, Ruby) needed, 

no need for hardware / OS maintenance
■Possibility to scale up quickly and easily

Disadvantages
■Usually fixed environment with little variation points
■Provider SLA targets might differ from yours, e.g. downtime, response times
■Limited technical support

Examples: Heroku, Azure Compute, Google App Engine

Platform as a Service (Paas)

20



Scalable Software Engineering 

Providers deliver virtual private servers (VPS) with requested configuration 
Setup of execution environment, database servers, etc. is up to customers

Advantages
■Flexibility regarding execution environment
■Avoid management of underlying hardware
■Dynamic on-demand scaling of resources

Disadvantages
■Server administration know-how and efforts required
■ It’s still a VM: Potential performance drops, Disk I/O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean

Infrastructure as a Service (IaaS)

21



Scalable Software Engineering 

Providers allocate dedicated hardware, classical approach

Advantages
■Complete control over server, down to bare metal, full power always available
■No virtualization-related performance issues
■More control over network configuration
■Dedicated SLAs

Disadvantages (compared to IaaS)
■No easy scaling of resources
■Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe

Dedicated Hosting

22



Scalable Software Engineering 

You host your own servers

Advantages
■Complete control over data, security, operations, network etc.
■Custom designed servers possible
■Add cabinets in available space with low cost

Disadvantages
■Huge upfront costs, e.g. space, cooling, fiber, hardware
■Expanding the space of the datacenter is expensive
■Provide around the clock support, monitoring, personnel, etc.
■Not feasible for small companies

Examples: Google, Facebook

Own datacenter

23



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
■ Virtualization
■ Configuration Management 

4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

24



Scalable Software Engineering 

Setting up an Environment

25

Main challenges in preparing infrastructure:
■Minimize the effort required to repeatedly 

setup identical execution environments
■Without relying on “administration gurus”

Solutions:
■DevOps, i.e. a strong collaboration between 

the development and the operations team
■A strong bias towards automation



Scalable Software Engineering 

Where to Start With "Deploying"? 

26

■Hosted solutions aren't always feasible for initial experiments
■Maintaining local installs of server stacks

in different versions can get cumbersome 
■Development vs. production environment differences 

result in "it works on my machine" problems
■Don't want to force all developers to use

same development environment (e.g. choice of OS)

Possible solution: Virtualization / Containerization
■"Deploy" on your local OS for development
■Provision a virtual machine, build a container



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
■ Virtualization
■ Configuration Management

4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

27



Scalable Software Engineering 

Virtualization software provides and provisions a VM
Configuration management tools configure it, e.g. install required software

Why not configure manually?
■Error prone, repetitive tasks
■Documentation has to be kept up-to-date
■Explicit knowledge transfer required if admin changes

One config management tool example: Chef (http://chef.io, https://github.com/chef/chef)

■Formalize software install and configuration state into recipes
■Shared recipes (https://supermarket.chef.io/cookbooks)
■Ensure software and dependencies are installed
■Ensure that files, packages, and services are in the prescribed state

Next Step: Automate VM Setup

28

http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks


Scalable Software Engineering 

Using configuration management tools, you can:
■Define the required packages for all required servers
■ Install and configure necessary services
■Create directory structures
■Create custom configuration files (e.g., database.yml)

Also possible:
■Templates to create different files based on variables
■Creating various environments (e.g. staging vs. production)
■Central management of configuration files that are 

automatically transferred to clients

Configuration Management

29



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

30



Scalable Software Engineering 

Necessary steps after the server is available:
■Checkout code
■ Install or update dependencies (i.e. gems)
■Run database migrations, restart application servers
■Restart index servers, setup new Cron jobs, etc.

Remember: Automation!
■CI solutions support deploying to hosting providers
□Deploy after all the tests pass
□Deploy as updates are made

■Dedicated config management tools
□Explicit control over what is set up

Deploying as Part of the Dev Process

31



Scalable Software Engineering 

Example: Travis CI Continuous Integration and Deployment Workflow:

Deployment with CI

32

1. before_install
2. install
3. before_script
4. script
5. after_success or 

after_failure
6. after_script
7. before_deploy
8. deploy
9. after_deploy

optional
steps

Non-zero exit-status here:
build failed. Not deployed.

Otherwise: deployed in deploy step.

http://docs.travis-ci.com/user/build-lifecycle/

tests are
run

http://docs.travis-ci.com/user/build-lifecycle/


Scalable Software Engineering 

Automate, customize, and execute your software development
workflows in your repository
■Create own actions or use community actions
■Event-driven (e.g. pull request creation executes testing script)
■Workflow: automated procedure added to your repository
□Consist of one or more jobs (set of steps)
□Scheduled or triggered by an event
□Actions are standalone commands that 

are combined into steps to create a job

GitHub Actions

33https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions



Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

35



Scalable Software Engineering 

Keep an eye on server and health and applications:
■Monitor in production
□This is where errors are most costly
□Revenue loss, support tickets

■ Issue alerts
□When components fail
□When predefined thresholds are exceeded

■Examples:
□Regular HTTP GET requests (e.g. https://uptimerobot.com/)

□Monitor infrastructure, down to switches and services (e.g. http://nagios.org)

Monitoring Servers & Applications

36

https://uptimerobot.com/
http://nagios.org


Scalable Software Engineering 

Monitor application errors and performance bottlenecks:
■Monitor errors that happen at runtime
□ In production
□Discovered by users

■Notifications on application errors or slow downs

Examples:
■Errbit—Collect and organize errors (https://github.com/errbit/errbit)
■New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

Monitoring Servers & Applications

37

https://github.com/errbit/errbit
http://newrelic.com/


Scalable Software Engineering 

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

38



Scalable Software Engineering 

Advantages:
■Users get a sense of “something happening”, short feedback loops 
■Business value of features immediately present
■Deploy scripts used often, less likely to contain errors
■Reduced amount of code changes per release → faster fixes, less downtime

Prerequisites/Disadvantages:
■Only feasible with extensive set of good tests
■Tests / deployment need to run fast (Continuous Integration)
■Additional training for developers (DevOps) required
■May not be feasible for applications that require planning or

long-term support (e.g. operating systems)

Deploying 50 times a day?
Continuous Delivery

39

Operating systems feature
CD (rolling releases) and
classical (LTS releases)



Scalable Software Engineering 

How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):
■ Intermediate Reviews for individual stories by the PO
□At sprint review, each finished story is already running in production
□Review meetings become shorter, more of a high level overview

■Get faster feedback from stakeholders for next Scrum meeting
■Deploying to staging or testing systems becomes part of the definition of done
■Acceptance of features not only based on PO approval but stakeholder approval?
□A/B testing?

■"Working software is the primary measure of progress"—Agile Manifesto
□ Is software that is not deployed working? (DevOps)

Continuous Deployment vs. Scrum

40



Summary

Scalable Software Engineering 41

Deployment & DevOps
■ DevOps Concepts
■ Application Hosting Options
■ Automating Environment Setup
■ Deployment Scripting
■ Application Monitoring
■ Continuous Deployment and Scrum



Fröhliche Jahresendszeit!
Bis nächstes Jahr!

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2021/22

Image by Dennis Amith on flickr: https://flickr.com/photos/kndynt2099/15639399658 (CC BY-NC 2.0)


