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Infrastructure as Code enables DevOps teams to test applications in 
production-like environments early in the development cycle.

Terms
■ Provisioning:

Creating the systems that you’ll need to manage later on
■ Configuration management:

actually making systems useful, install and configure them
■ Deployment:

Getting the work we’ve done onto the systems in question

IaC and DevOps
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Source: https://archive.fosdem.org/2018/schedule/event/deployment_provisioning_orchestration/
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Development vs. Operations
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Problems
■ Software needs to be operated, run in production, and maintained
□ Developers vs. Admins

■ Short development and deployment cycles
■ Maintain quality standards

Development & Operations
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Customer Devs Admins

Agile DevOps

“Agile for deployment”

DevOps
■ Formalized process for deployment
■ Focus on communication, collaboration, 

and integration between Dev and Ops
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Definition
■ Fairly recent trend
■ "[...] no uniform definition for […] DevOps.

[…] people use their own definitions" [Dyck, 2015]
■ "There is no consensus of what concepts DevOps covers,

nor how DevOps is defined" [Erich, 2017]

■ Best practices to
shorten the application development life cycle

DevOps
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[Dyck, 2015] Dyck, Andrej; Penners, Ralf; Lichter, Horst (19 May 2015). "Towards Definitions for Release Engineering and DevOps".

Proceedings of the 2015 IEEE/ACM 3rd International Workshop on Release Engineering. IEEE.

[Erich, 2017] Erich, F.M.A.; Amrit, C.; Daneva, M. (June 2017). "A Qualitative Study of DevOps Usage in Practice". Journal of Software: Evolution and Process. 29 (6).
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Not DevOps
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Release
■ Planned state of the application
■ Set of requirements
■ Examples
□ Next big version with new shiny features
□ Urgent hotfix
□ Anything in-between

Version
■ Could be anything
■ A release has a version number

Terminology
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Build
■ Attempt to implement a release
□ Snapshot of application

■ Often the output of the build tool
□ Not: the build script/tool/process

■ Version number is 
“<Release Number>.<Build Number>”

Terminology
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Environment
■ A system on which the application 

can be deployed and used

To promote
■ To deploy a build on the next environment

To release
■ To promote a build to production
■ Thereby finishing the release

Terminology
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Overview of Environments

Development
managed by developers

Development
■Where the developers work
■One per developer (if possible)

Integration
■Runs all tests
■A try-out version

Quality Assurance
■Professional manual testing

Operations
managed by admins

Staging
■ Clone of production system
■ Final rehearsal
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Production
■ The live system
■ Failures are expensive here
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Example
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Example
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Workflow
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DevOps
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Builds are immutable
■ If changed, previous testing was pointless
■ Even the smallest change has to go through all environments

Many systems required
■ Each environment has to be maintained
■ Automation?

Deployment overhead
■ Manual steps are opportunities for human failure
■ Automation?

Implications
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Remainder of this lecture
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Choice of hosting options is driven by a variety of parameters
■ Initial setup effort, cost, and required expertise
■ Operational costs and effort
■ Targeted service level agreements (SLAs)
■ Legal considerations (data privacy, liability, etc.)

Application Hosting Options
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Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages
■Minimal effort and knowledge required for setup
■Only platform development knowledge (e.g. Python, Ruby) needed, 

no need for hardware / OS maintenance
■Possibility to scale up quickly and easily

Disadvantages
■Usually fixed environment with little variation points
■Provider SLA targets might differ from yours, e.g. downtime, response times
■Limited technical support

Examples: Heroku, Azure Compute, Google App Engine

Platform as a Service (Paas)
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Providers deliver virtual private servers (VPS) with requested configuration 
Setup of execution environment, database servers, etc. is up to customers

Advantages
■Flexibility regarding execution environment
■Avoid management of underlying hardware
■Dynamic on-demand scaling of resources

Disadvantages
■Server administration know-how and efforts required
■ It’s still a VM: Potential performance drops, Disk I/O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean

Infrastructure as a Service (IaaS)
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Providers allocate dedicated hardware, classical approach

Advantages
■Complete control over server, down to bare metal, full power always available
■No virtualization-related performance issues
■More control over network configuration
■Dedicated SLAs

Disadvantages (compared to IaaS)
■No easy scaling of resources
■Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe

Dedicated Hosting
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You host your own servers

Advantages
■Complete control over data, security, operations, network etc.
■Custom designed servers possible
■Add cabinets in available space with low cost

Disadvantages
■Huge upfront costs, e.g. space, cooling, fiber, hardware
■Expanding the space of the datacenter is expensive
■Provide around the clock support, monitoring, personnel, etc.
■Not feasible for small companies

Examples: Google, Facebook

Own datacenter
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Setting up an Environment
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Main challenges in preparing infrastructure:
■Minimize the effort required to repeatedly 

setup identical execution environments
■Without relying on “administration gurus”

Solutions:
■DevOps, i.e. a strong collaboration between 

the development and the operations team
■A strong bias towards automation
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Where to Start With "Deploying"? 
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■Hosted solutions aren't always feasible for initial experiments
■Maintaining local installs of server stacks

in different versions can get cumbersome 
■Development vs. production environment differences 

result in "it works on my machine" problems
■Don't want to force all developers to use

same development environment (e.g. choice of OS)

Possible solution: Virtualization / Containerization
■"Deploy" on your local OS for development
■Provision a virtual machine, build a container
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Virtualization software provides and provisions a VM
Configuration management tools configure it, e.g. install required software

Why not configure manually?
■Error prone, repetitive tasks
■Documentation has to be kept up-to-date
■Explicit knowledge transfer required if admin changes

One config management tool example: Chef (http://chef.io, https://github.com/chef/chef)

■Formalize software install and configuration state into recipes
■Shared recipes (https://supermarket.chef.io/cookbooks)
■Ensure software and dependencies are installed
■Ensure that files, packages, and services are in the prescribed state

Next Step: Automate VM Setup
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http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks


Scalable Software Engineering 

Using configuration management tools, you can:
■Define the required packages for all required servers
■ Install and configure necessary services
■Create directory structures
■Create custom configuration files (e.g., database.yml)

Also possible:
■Templates to create different files based on variables
■Creating various environments (e.g. staging vs. production)
■Central management of configuration files that are 

automatically transferred to clients

Configuration Management
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Necessary steps after the server is available:
■Checkout code
■ Install or update dependencies (i.e. gems)
■Run database migrations, restart application servers
■Restart index servers, setup new Cron jobs, etc.

Remember: Automation!
■CI solutions support deploying to hosting providers
□Deploy after all the tests pass
□Deploy as updates are made

■Dedicated config management tools
□Explicit control over what is set up

Deploying as Part of the Dev Process
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Example: Travis CI Continuous Integration and Deployment Workflow:

Deployment with CI
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1. before_install
2. install
3. before_script
4. script
5. after_success or 

after_failure
6. after_script
7. before_deploy
8. deploy
9. after_deploy

optional
steps

Non-zero exit-status here:
build failed. Not deployed.

Otherwise: deployed in deploy step.

http://docs.travis-ci.com/user/build-lifecycle/

tests are
run

http://docs.travis-ci.com/user/build-lifecycle/
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Automate, customize, and execute your software development
workflows in your repository
■Create own actions or use community actions
■Event-driven (e.g. pull request creation executes testing script)
■Workflow: automated procedure added to your repository
□Consist of one or more jobs (set of steps)
□Scheduled or triggered by an event
□Actions are standalone commands that 

are combined into steps to create a job

GitHub Actions

33https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
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Keep an eye on server and health and applications:
■Monitor in production
□This is where errors are most costly
□Revenue loss, support tickets

■ Issue alerts
□When components fail
□When predefined thresholds are exceeded

■Examples:
□Regular HTTP GET requests (e.g. https://uptimerobot.com/)

□Monitor infrastructure, down to switches and services (e.g. http://nagios.org)

Monitoring Servers & Applications
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https://uptimerobot.com/
http://nagios.org
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Monitor application errors and performance bottlenecks:
■Monitor errors that happen at runtime
□ In production
□Discovered by users

■Notifications on application errors or slow downs

Examples:
■Errbit—Collect and organize errors (https://github.com/errbit/errbit)
■New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

Monitoring Servers & Applications
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https://github.com/errbit/errbit
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Advantages:
■Users get a sense of “something happening”, short feedback loops 
■Business value of features immediately present
■Deploy scripts used often, less likely to contain errors
■Reduced amount of code changes per release → faster fixes, less downtime

Prerequisites/Disadvantages:
■Only feasible with extensive set of good tests
■Tests / deployment need to run fast (Continuous Integration)
■Additional training for developers (DevOps) required
■May not be feasible for applications that require planning or

long-term support (e.g. operating systems)

Deploying 50 times a day?
Continuous Delivery

39

Operating systems feature
CD (rolling releases) and
classical (LTS releases)
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How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):
■ Intermediate Reviews for individual stories by the PO
□At sprint review, each finished story is already running in production
□Review meetings become shorter, more of a high level overview

■Get faster feedback from stakeholders for next Scrum meeting
■Deploying to staging or testing systems becomes part of the definition of done
■Acceptance of features not only based on PO approval but stakeholder approval?
□A/B testing?

■"Working software is the primary measure of progress"—Agile Manifesto
□ Is software that is not deployed working? (DevOps)

Continuous Deployment vs. Scrum
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Summary
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Deployment & DevOps
■ DevOps Concepts
■ Application Hosting Options
■ Automating Environment Setup
■ Deployment Scripting
■ Application Monitoring
■ Continuous Deployment and Scrum



Fröhliche Jahresendszeit!
Bis nächstes Jahr!

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2021/22

Image by Dennis Amith on flickr: https://flickr.com/photos/kndynt2099/15639399658 (CC BY-NC 2.0)


