Hasso
Plattner
Institut

Digital Engineering * Universitat Potsdam

Software Reviews

Scalable Software Engineering
WS 2022/23 Enterprise Platform and Integration Concepts

Image courtesy @EthicsinBricks in Twitter: https://twitter.com/EthicsInBricks/status/1430556314556669956 (with permission)

Software Reviews E

a software product is [examined by] project personnel,
managers, users, customers, user representatives, or

other interested parties for comment or approval)
—IEEE1028

) 3 & W S
Principles

m Generate comments on software

* % & K
m Several sets of eyes check

m Emphasis on people over tools
m Lower cost of fixing defects in review than in the field

Scalable Software Engineering

Software Reviews

Motivations
m Improve code quality
(e.g. maintainability, readability, uniformity)
m Discuss alternative solutions,
generate ideas for the future
m Knowledge transfer regarding codebase
m Increase sense of Collective Code Ownership
m Find defects
m Check compliance (e.g. legal)

Scalable Software Engineering

Code Quality Measurement:

WTFs/Minute
4_ WTF &, ’/'
\ N /4
e Review i e,
|, o
WTF i
— this sllst? /=
L] N L
U ™~
— | I—
Good Code Bad Code

http://commadot.com

Types of Reviews [IEEE1028-2008] E

One type of review: Inspection

m |ldentify software product anomalies

m Since the 1970’s, aka “Fagan Inspection”

m Formal process, can involve hard copies of the code and documents
m Review team checks artifacts independently before,

consolidation meeting with developers

|

Planning L »| Overnview Preparation Meeting BN Rework] Follow-up

Scalable Software Engineering ~ Fagan inspection basic model: https://en.wikipedia.org/wiki/Fagan inspection#f/media/File:Fagan Inspection Simple flow.svg (CCO) 4

https://en.wikipedia.org/wiki/Fagan_inspection

Focus Iin Reviews ﬂ

Reviewed first Reviewed later

Implementations of complex algorithms Code in well-understood problem domains
Code where faults or exceptions lead to Code which won’t break the functionality if
system failure faults occur

Parts using new technologies/libraries Parts similar to those previously reviewed
Parts written by new or inexperienced Reused and already reviewed parts

team members

Code that features high code churn Code with few changes

[/ J—
Scalable Software Engineering ‘ 5

Change-based Code Reviews E

[Rigby’13]
[Bacchelli‘13]
Change-based Reviews (e.g. in Pull Requests)
m Lightweight process r——
m Size of reviewed code is (should be) small o |
m Performed regularly and quickly, -
mainly before code enters main branch A

Shift in Focus (Compared to Inspections)
m From defect finding to group problem solving
m Prefer discussing solutions over reporting defects

Scalable Software Engineering 6

Code Review Goals

A
Least
important

Priorities of Code Reviews

m Build a shared mental model

m Ensure sane design

m Find defects vs. understanding code

Most
important

Scalable Software Engineering http://blakesmith.me/2015/02/09/code-review-essentials-for-software-teams.html 7

Recent Research E

[Bosu’17]
[Mclntosh’14]
[Bacchelli ‘13]

m Code review coverage and review participation
share significant link with software quality

m Most comments concern code improvements,
understandability, social communication

m Only ~“15% of comments indicate possible defects

m Developers spend approximately five hours per week
(10-15% of their time) in code reviews

O

W

Scalable Software Engineering 8

Research Findings

Ranked Motivations From Developers

EXpECtations Top [] Second @ Third N

o Findingdefects| || [N
| Codelmprovement | ||| NN
Alternative Solutions | | s
Knowledge Transfer I:I:_
Team Awareness :l:_
Improving Dev Process |:|:-
Share Code Ownership E]:-
AvoidBuildBreaks | [[N
Track Rationale |:|:-
Team Assessment D:-

0 200 400 600
Responses

Expectations

4 years later Microsoft [l 0SS

Minor Errors, Typos - 1
Other - W
0% 20% 40% 60%

Percentage of respondents
Scalable Software Engineering

[Bosu’17]

Maintainability -

Knowledge sharing -
; |

Functional defects -

Community building -

Empirical study outcomes
Comments in each Category [Bacchelli 113]

Code Improvement

Understanding

Social Communication

Defects
External Impact
Testing

Review Tool

Knowledge Transfer

Misc

0% 10% 20% 30%
Percentage of Comments

Maintainability and code improvements
identified as most important aspects of
modern code reviews

Challenges of Change-Based Review

m Delay the shipping of implemented features
m Force reviewers to switch context
m Little feedback for legacy code — — —

NO NEED To DOUBLE CHECK NO NEED To Look AT

THiS CHANGE LiST, iF SoMg PRO-
BLEMS REMAIN THE REVIEWER
Will CATCH THEM.

THIS CHANGE LIST ToO C,LOSELY)
1'M SUuRE THE AVUTHoR
UNOWS WHAT HE'S DOiNG.

m Overloading (too many files),
developers create large patches

m Overcrowding (too many reviewers),
assigning too many reviewers may
lower review quality

Image: https://devops.com/dark-side-infrastructure-code/ 1 O
Scalable Software Engineering

Reviewer Assighment

Usually, two reviewers find optimal number of defects

Reviewer candidates
m People who contributed changes (find defects)
m New developers (transfer knowledge)

geek & poke

m Team members with a small review queue DONT NEED TO

OBFUSCATE IT
BEFORE
SHIPPING

m Reviewers with different fields of expertise

AT LEAS T SOMETHING
POSITIVE

gby’ 11
Scalable Software Engineering Image: http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-review.html [ngbv 13]

Review Content

Giray Ozil @girayozil 000
Ask a programmer to review 10 lines of code, he'll find 10 issues. Ask him to
do 500 lines and he'll say it looks good.

Q 76 0

J

Q) 1.4K

n 1line per
£-||4— second m Size of artifact to review matters
& . :
2 — m Semantically coherent changes easier
S ovilines . .
& o er second to review than interleaved concerns
Images: http://atlassianblog.wpengine.com/developer/assets_c¢/2011/07/mt-perloc-thumb-500x263-7290.png 1 2

Scalable Software Engineering https://twitter.com/girayozil/status/306836785739210752?lang=en

Software Review Helpers E

m Testing checks functionality via dynamic execution and assertions
m Code reviews manually check code via static analysis o

Automated Static Analysis (aka “Linters”) (why’s it called that?) b
m Coding conventions (e.g. RuboCop, https://github.com/rubocop-hg/rubocop)
m Code smells (e.g. reek, https://github.com/troessner/reek)

Scalable Software Engineering 1 4

https://github.com/rubocop-hq/rubocop
https://github.com/troessner/reek

Summary

Software Reviews

m Not a new thing, good reasons to do them (goals & motivation)
m Focus and goals of software reviews
m Review techniques
0 Software Inspections
0 Change-based code reviews
m Reviewer assignment & best practices

Scalable Software Engineering

15

References E

[Bosu’17] Bosu, Amiangshu, et al. "Process Aspects and Social Dynamics of
Contemporary Code Review: Insights from Open Source Development and Industrial
Practice at Microsoft." TSE 43.1 (2017): 56-75.

[Mcintosh’14] Mcintosh, Shane, et al. "The impact of code review coverage and code
review participation on software quality: A case study of the qgt, vtk, and itk projects."
MSR’14.

[Rigby’13] Rigby, Peter C., and Christian Bird. "Convergent contemporary software
peer review practices." FSE’13.

[Bacchelli‘13] Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and
challenges of modern code review." ICSE’13.

[Feitelson‘13] Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck. "Development
and deployment at facebook." IEEE Internet Computing 17.4 (2013): 8-17.

Scalable Software Engineering

16

