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Software Reviews E

a software product is [examined by] project personnel,
managers, users, customers, user representatives, or

other interested parties for comment or approval )
—IEEE1028
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Principles

m Generate comments on software

* % & K
m Several sets of eyes check

m Emphasis on people over tools
m Lower cost of fixing defects in review than in the field
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Software Reviews

Motivations
m Improve code quality
(e.g. maintainability, readability, uniformity)
m Discuss alternative solutions,
generate ideas for the future
m Knowledge transfer regarding codebase
m Increase sense of Collective Code Ownership
m Find defects
m Check compliance (e.g. legal)

Scalable Software Engineering

Code Quality Measurement:
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Types of Reviews [IEEE1028-2008] E

One type of review: Inspection

m |ldentify software product anomalies

m Since the 1970’s, aka “Fagan Inspection”

m Formal process, can involve hard copies of the code and documents
m Review team checks artifacts independently before,

consolidation meeting with developers

|

Planning L »|  Overnview Preparation Meeting BN Rework ] Follow-up
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https://en.wikipedia.org/wiki/Fagan_inspection

Focus Iin Reviews ﬂ

Reviewed first Reviewed later

Implementations of complex algorithms Code in well-understood problem domains
Code where faults or exceptions lead to Code which won’t break the functionality if
system failure faults occur

Parts using new technologies/libraries Parts similar to those previously reviewed
Parts written by new or inexperienced Reused and already reviewed parts

team members

Code that features high code churn Code with few changes

[/ J—
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Change-based Code Reviews E

[Rigby’13]
[Bacchelli‘13]
Change-based Reviews (e.g. in Pull Requests)
m Lightweight process r——
m Size of reviewed code is (should be) small o |
m Performed regularly and quickly, -
mainly before code enters main branch A

Shift in Focus (Compared to Inspections)
m From defect finding to group problem solving
m Prefer discussing solutions over reporting defects
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Code Review Goals

A
Least
important

Priorities of Code Reviews

m Build a shared mental model

m Ensure sane design

m Find defects vs. understanding code

Most
important
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Recent Research E

[Bosu’17]
[Mclntosh’14]
[Bacchelli ‘13]

m Code review coverage and review participation
share significant link with software quality

m Most comments concern code improvements,
understandability, social communication

m Only ~“15% of comments indicate possible defects

m Developers spend approximately five hours per week
(10-15% of their time) in code reviews

O

W
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Research Findings

Ranked Motivations From Developers

EXpECtations Top [ ] Second @  Third N
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[Bosu’17]

Maintainability -

Knowledge sharing -
; |

Functional defects -

Community building -

Empirical study outcomes
Comments in each Category [Bacchelli 113]

Code Improvement

Understanding

Social Communication

Defects
External Impact
Testing

Review Tool

Knowledge Transfer

Misc

0% 10% 20% 30%
Percentage of Comments

Maintainability and code improvements
identified as most important aspects of
modern code reviews



Challenges of Change-Based Review

m Delay the shipping of implemented features
m Force reviewers to switch context
m Little feedback for legacy code — — —

NO NEED To DOUBLE CHECK NO NEED To Look AT

THiS CHANGE LiST, iF SoMg PRO-
BLEMS REMAIN THE REVIEWER
Will CATCH THEM.

THIS CHANGE LIST ToO C,LOSELY)
1'M SUuRE THE AVUTHoR
UNOWS WHAT HE'S DOiNG.

m Overloading (too many files),
developers create large patches

m Overcrowding (too many reviewers),
assigning too many reviewers may
lower review quality

Image: https://devops.com/dark-side-infrastructure-code/ 1 O
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Reviewer Assighment

Usually, two reviewers find optimal number of defects

Reviewer candidates
m People who contributed changes (find defects)
m New developers (transfer knowledge)

geek & poke

m Team members with a small review queue DONT NEED TO

OBFUSCATE IT
BEFORE
SHIPPING

m Reviewers with different fields of expertise

AT LEAS T SOMETHING
POSITIVE

gby’ 11
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Review Content

Giray Ozil @girayozil 000
Ask a programmer to review 10 lines of code, he'll find 10 issues. Ask him to
do 500 lines and he'll say it looks good.

Q 76 0
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Q) 1.4K

n 1line per
£-||4— second m Size of artifact to review matters
& . :
2 — m Semantically coherent changes easier
S ovilines . .
& o er second to review than interleaved concerns
Images: http://atlassianblog.wpengine.com/developer/assets_c¢/2011/07/mt-perloc-thumb-500x263-7290.png 1 2
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Software Review Helpers E

m Testing checks functionality via dynamic execution and assertions
m Code reviews manually check code via static analysis o

Automated Static Analysis (aka “Linters”) (why’s it called that?) b
m Coding conventions (e.g. RuboCop, https://github.com/rubocop-hg/rubocop)
m Code smells (e.g. reek, https://github.com/troessner/reek)

Scalable Software Engineering 1 4
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Summary

Software Reviews

m Not a new thing, good reasons to do them (goals & motivation)
m Focus and goals of software reviews
m Review techniques
0 Software Inspections
0 Change-based code reviews
m Reviewer assignment & best practices
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