
Advanced Testing Concepts (in Ruby on Rails)

Enterprise Platform and Integration Concepts
Scalable Software Engineering
WS 2022/23

Image by Paul Albertella on flickr: https://www.flickr.com/photos/paulspace/10427471016 (CC BY 2.0)

Scalable Software Engineering

Typical Test Run

2Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Run setup

Run
teardown

What is regularly
done in setup and
teardown steps?

before each
test block
before(:each)

after each
test block
after(:each)

*_spec.rb

bundle exec rspec

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Scalable Software Engineering

Isolation of Test Cases

3Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Independent Tests
■ Bug in model should lead to

failures in tests related to this model only
■ Allow localization of bug

Scalable Software Engineering

Isolation of Test Cases

4

Achieving Test Case Isolation
■ Don’t write complex tests
■Don’t share complex test data
■ Don’t use complex objects

Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Scalable Software Engineering

Two main ways to provide data to test cases:

Fixtures
■ Fixed state at the beginning of a test
■ Assertions can be made against this state

Factories
■ Blueprints for models
■Used to generate test data locally in the test

Test Data Overview

5

Scalable Software Engineering

Fixtures for testing
■ Fixed sample data/objects
■ Populate testing database with predefined data before test run
■ Stored in database independent files (e.g. test/fixtures/<name>.yml)

Fixture Overview

6
■ http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

■ http://guides.rubyonrails.org/testing.html

test/fixtures/users.yml
david: # Each fixture has a name
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development

http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html
http://guides.rubyonrails.org/testing.html

Scalable Software Engineering

Fixtures are global
■ Only one set of data, every test has to deal with all test data

Fixtures are spread out
■ Own directory
■ One file per model -> data for one test is spread out over many files
■ Tracing relationships is challenging

Fixtures are distant
■ Fixture data is not immediately available in the test
■ expect(users(:ernie).age + users(:bert).age).to eq(20) #why 20?

Fixtures are brittle
■ Tests rely on fixture data, they break when data is changed
■ Data requirements of tests may be incompatible

Fixture Drawbacks

7

Scalable Software Engineering

Test data should be
■ Local: Defined as closely as possible to the test
■ Compact: Easy and quick to specify; even for complex data sets
■ Robust: Independent from other tests

One way to achieve these goals: Data factories

Test Data Factories

8

FactoryBot.define do
This will use the User class
factory :admin, class: User do
name { "Admin User" }
admin true

end
end

Rails library: FactoryBot
■ Features around
□ Creating objects
□ Connecting objects

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Scalable Software Engineering

■ Different strategies: build, create (standard), attributes_for

Using Factories

9

Returns a User instance that's _not_ saved
user = build(:user)

Returns a _saved_ User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Passing a block will yield the return object
create(:user) do |user|
user.posts.create(attributes_for(:post))

end

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Scalable Software Engineering

Factories: Associations

11

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last_name: ”Different“

End

Builds and saves a User and a Post
post = create(:post)
post.new_record? # => false
post.author.new_record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)
post.new_record? # => true
post.author.new_record? # => false (why is this required?)

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Summary

Scalable Software Engineering 15

Advanced Testing Concepts
■ Typical test run
□ Setup
□ Teardown

■ Isolation of test cases
■ Test data
□Guiding principles
□ Fixtures vs factories

Test Isolation & Test Doubles

Scalable Software Engineering

Image by mac_filko on flickr: https://flickr.com/photos/mac_filko/5496013905 (CC BY 2.0)

Scalable Software Engineering

Isolation of Test Cases

17Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Achieving Test Case Isolation
■ Don't write complex tests
■ Don’t share complex test data
■Don’t use complex objects

Scalable Software Engineering

Test Doubles

18

Objects that stand in for the real thing in a test
■Generic term for range of testing techniques,

i.e. “stunt double”
■ Purpose: simplify automated testing

Used when
■ Real object is unavailable
■ Real object is difficult to access or trigger
■ Real object is slow or expensive to run
■ An application state is required that is challenging to create

We recommend RSpec-Mocks.
Integrated with RSpec.
http://github.com/rspec/rspec-mocks

Overview: https://www.ruby-toolbox.com/categories/mocking

https://www.ruby-toolbox.com/categories/mocking

Scalable Software Engineering

Possibilities of Test Doubles

19

Verify behavior during a test
■ Usually: test system state after a test
□ Only result of code are tested
□ Intermediate steps not considered

■ Test doubles: Allow testing detailed system behavior
□ E.g. How often a method is called, in which order, with which parameters

Scalable Software Engineering

Stub Testing Technique

20

dbl = double(“user”)
allow(dbl).to receive_messages(name: “Fred”, age: 21)
expect(dbl.name).to eq(“Fred”) #not really a good test :)
dbl.height #raises error (even if original object had property)

Stubs: Provide canned responses to specified messages
■ Returns predefined value if called
■ No method call on the real object
■ Strict by default (error when messages received that have not been allowed)

■ Alternatively, if all method calls should succeed: Null object double
dbl = double(“user”).as_null_object
dbl.height.in_cm # this is ok! Returns itself (dbl)

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/null-object-doubles

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/null-object-doubles

Scalable Software Engineering

Mocks: Define messages that must be received (or not received)
■ Demands that mocked methods are called for test pass

■Or as often as desired

■ If test ends with expected calls missing, it fails!
■Mocks are stubs with attitude, mocks can fail tests

Mock Testing Technique

21

book = double("book", title: "The RSpec Book")
expect(book).to receive(:open).once # 'once' is default
book.open # this works
book.open # this fails

user = double("user")
expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level_up).at_least(4).times
expect(user).to receive(:notify).at_most(3).times

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/expecting-messages

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/expecting-messages

Scalable Software Engineering

Spy Testing Technique

22

dbl = double(“user”).as_null_object # same as spy("user")
dbl.height
dbl.height
expect(dbl).to have_received(:height).at_least(2).times

Spies: Record received messages, then assert they have been received
■ Alternate way of using test doubles in Given-When-Then structure
■ Allows asserting that messages have been received at the end of test

■ Alternatively: spy on specific messages of real objects (partial doubles)

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/spies
https://thoughtbot.com/blog/a-closer-look-at-test-spies

user = User.new
allow(user).to receive(:height) # Given a user
user.measure_size # When I measure the size
expect(user).to have_received(:height) # Then height is called

This pattern for
tests is also called
arrange-act-assert

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/spies
https://thoughtbot.com/blog/a-closer-look-at-test-spies

Scalable Software Engineering

Partial Test Doubles

23

s = "a user name" # s.length == 11
allow(s).to receive(:length).and_return(9001)
expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

Extension of real object instrumented with test-double behavior
■ Mix real object and stubbed/mocked methods
■ Only expensive methods might need replacing

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/partial-test-doubles

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/basics/partial-test-doubles

Scalable Software Engineering

Expecting and Raising Errors

25

Testing exception handling
■ A test double can raise an error when it receives a message
■ Real error can be hard to provoke
■ Test various types of exceptions: and_raise(ExceptionClass)

dbl = double()
allow(dbl).to receive(:foo).and_raise("boom")
dbl.foo # This produces:

Failure/Error: dbl.foo
RuntimeError:
boom

https://relishapp.com/rspec/rspec-mocks/v/3-12/docs/configuring-responses/raising-an-error

https://relishapp.com/rspec/rspec-mocks/v/3-12/docs/configuring-responses/raising-an-error

Scalable Software Engineering

Verifying Doubles

26

Check that methods being stubbed are present on underlying object
■ Stricter alternative to normal doubles
■ Confidence that doubles are not fiction
■ Verify that provided arguments are supported by method signature

class Post
attr_accessor :title, :author, :body

end

post = instance_double("Post") # reference to the class Post
allow(post).to receive(:title)
allow(post).to receive(:message).with (‘a msg’) # this fails (not defined)

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/verifying-doubles/using-an-instance-double

https://relishapp.com/rspec/rspec-mocks/v/3-10/docs/verifying-doubles/using-an-instance-double

Scalable Software Engineering

Disadvantages
■ Test doubles must accurately model real object behavior
■ Risk testing values set by test doubles
■ Run out of sync with real implementation, brittle while refactoring

Test Doubles Pros and Cons

27

Best practice:
minimize amount
of test doubles

Advantages
■ Allow tests focused on behavior
■ Speed (e.g. not having to use an expensive database query)
■ Isolation of tests

Summary

Test Isolation & Test Doubles
■Use cases & goals
■Mocks
■ Stubs
■ Spy
■ Pros & Cons

Scalable Software Engineering 28

Image by stavos on flickr: https://flickr.com/photos/stavos52093/20189988408/ (CC-BY-NC-ND 2.0)

Testing Tests & Testing Best Practices

Scalable Software Engineering

Scalable Software Engineering

Code Coverage: Common metric for evaluating test suite
■ Absence of coverage indicates potential blind spots
■ (High) coverage means little
■ ~100% code coverage is a result of BDD

Code Coverage

30

■ Line Coverage: executed LOC during test suite run ÷ all LOC * 100
■ 100% line coverage even if one branch is not executed

■ Branch Coverage: has each control structure branch
(e.g. if and case statements) been executed?

if (i > 0); i += 1 else i -= 1 end

SimpleCov:
code coverage
tool for Ruby

Scalable Software Engineering

Independence
■Of external test data
■Of other tests (and test order)

Repeatability
■ Same results each test run
■ Potential issues
□Dates
□ Random numbers
□ Type, state and behavior of test database
□ Employed library depending on system architecture

Testing Best Practices

31

Scalable Software Engineering

Clarity
■ Test purpose should be immediately clear
■ Clarity on how the test fits into the larger test suite
□Not great:

□ Better:

32

it "sums the user points to 37" do
expect(User.total_points).to eq(37)

end

Testing Best Practices

it "rounds user‘s total gathered points in level to nearest integer" do
User.add_points(32.1)
User.add_points(5.3)
expect(User.total_points).to eq(37)

end

Scalable Software Engineering

Conciseness
■Minimum amount of code and objects
■ But: Clear beats short
□ Helper functions?

■Minimum amount of tests for a feature
□ Faster test suite
□ Faster to read & understand

33

def assert_user_level(points, level)
user = User.create(points: points)
expect(level).to eq(user.level)

end

it test_user_point_level
assert_user_level(0, "novice")
assert_user_level(1, "novice")
assert_user_level(500, "novice")
assert_user_level(501, "apprentice")
assert_user_level(1001, "journeyman")
assert_user_level(2001, "guru")
assert_user_level(nil, "novice")

end

Testing Best Practices

Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions.pdf

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Scalable Software Engineering

Robustness
■ A test is robust if, when it fails, failure is due to an error in what it should check
□ Intended behavior → test passes
□Unintended behavior → test fails

■ Example: View Testing

34

Testing Best Practices

describe "the dashboard page", type: :feature do
it "shows the dashboard title text" do
visit dashboard_path
expect(page).to have_content "My Projects"

end
it “has a title element" do
visit dashboard_path
expect(page).to have_css "h1#project_title"

end
end

Scalable Software Engineering

Robustness
■ Abstractions can increases robustness
□ E.g. constants instead of magic numbers

35

def assert_user_level(points, level)
user = User.build(points: points)
expect(user.level).to eq(level)

end

def test_user_point_level
assert_user_level(User::NOVICE_THRESHOLD + 1, "novice")
assert_user_level(User::APPRENTICE_THRESHOLD + 1, "apprentice")
...

end

Testing Best Practices

Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Be aware of tests that always pass
regardless of underlying logic!
(how can we prevent this?)

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Scalable Software Engineering

Manual Fault Seeding

37

Conscious introduction of program faults
■ Change program code → run tests → min. 1 test should fail

If no test fails a test is missing
■ Possible even with 100% line coverage
■ Asserts functional coverage
□ (Business) functionality is covered by tests

Scalable Software Engineering

Mutant: Modified version of the program with small change
■ Tests correctly cover code → test should fail

Automated Mutation Testing

38

if month > 12 then
year += month / 12
month = month % 12

end
Tests pass for

Tests fail for

Test
Cases

mutate

Program
Source

Mutants

if not month > 13 then
year -= month / 12
month = month % 12

end

next_month:

■Mutation Coverage: How many mutants did not cause a test to fail?
□ For Ruby: Mutant (https://github.com/mbj/mutant)

https://github.com/mbj/mutant

Scalable Software Engineering

Metamorphic Testing

39

When testing, often hard to find test oracle
■ Establish whether a test has passed or failed
■ Require understanding of exact input-output-relation
■May be more convenient to reason about relations between outputs

Compare outputs of system-under-test
■ Describe inherent behavior of the program
■No need to know exact outputs (in advance)
■ Test the invariants: f(x) < f(x+1)

Scalable Software Engineering

Metamorphic Testing Example

40

Test: Position of light source changes
■ Points closer to light source will be brighter
□ Exception: White pixels

■ Points further away from light source will be darker
□ Exception: Black pixels

■ Points hidden behind other objects don't change brightness

Scenario: Rendering lighting in a digital scene
■ Hard to verify all pixels have correct color
■Use relations of outputs for test cases

Scalable Software Engineering

Fuzzing / Fuzz Testing

41

Automated software testing technique
■ Provide randomized or invalid inputs to program
■ Capture exceptions, e.g. crashes, failing assertions, or memory leaks
■ Expose unhandled corner cases

Program inputs
■ Input that passes the input parser, but is strange enough for unusual behavior
■ Input that crosses a system boundary, e.g. user input or network packets

Further Reading

Scalable Software Engineering 42

■ http://betterspecs.org – Collaborative RSpec best practices documentation effort
■ Everyday Rails Testing with RSpec by Aaron Sumner, leanpub
■ The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends by

David Chelimsky et al.

Summary
Testing Tests & Testing Best Practices
■ Code Coverage
□ Types of coverage

■ Testing Best Practices
□ Independence
□ Repeatability
□ Clarity
□ Conciseness
□ Robustness

■Mutation Testing
■Metamorphic Testing
■ Fuzz Testing

Scalable Software Engineering 43

