
Software Engineering 2 (SWT2)

Chapter 4:
Development Process & Collaboration
Infrastructure

Agenda: Process & Infrastructure

■  Architecture Overview

■  Development Process for the project (Scaling SCRUM)

■  Collaboration Infrastructure

□  Communication & Coordination (Email, Calendar)

□  Application Lifecycle Management System (Agilo)

□  Continuous Integration (Hudson)

■  Version Control
□  Central vs. Distributed Version Control Systems

□  A GIT Workflow

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

2

Architecture Overview

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

3
{Hasso|Larry}-CRM

Plugins

Webserver (Lokal: WEBRick, Deployment: nginx)

Controller Layer View LayerModel Layer

Customer

Lead

User

Database

Customer
Controller

Leads
Controller

Users
Controller

ERB Engine

Layouts,
Templates

View Helper

Simple
Navigation ...

● ● ● ●

Datamapper

Mysql Server

Recap: High-level Overview of SWT2

Software development in the large

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

4

Implications of the Setup

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

5

What’s needed in such an environment?

■  A development process with clearly defined responsibilities

■  Communication on multiple levels
■  An Infrastructure for collaboration

Recap: Scrum

Foundation: Scrum

Question: How to scale this to multiple teams?

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

6

Scaling Scrum: Project Start

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

7

■  Start small and grow organically

□  Single Scrum team for preparation

□  Work out foundation for the first sprints
□  Scale when it becomes necessary

Scaling Scrum: Product Owner Hierarchy

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

8

[Christoph Mathis, Scrum Center]

Main
Product Backlog

Chief
Product
Owner

PO Team A

PO Team B

PO Team C

Update at the end of each sprint
to consolidate team results

Team
Product Backlogs

Just-in-time
update before the

synchronized
planning

Scaling Scrum: Sprint Planning

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

9

■  Preparation

□  Individual review and retrospection meetings

□  Meeting of all teams with 1-2 members each:
◊  Review of the last sprint
◊  Input dependencies (What is needed)
◊  Output dependencies (What needs to be deliverred)

■  Execution

□  Individual Plannings (strict timeboxing)

□  Discussion of identified additional input or output dependencies

□  Final sprint planning

■  Problem: Time consuming & high degree of coordination needed!

Scaling Scrum: Sprint Planning

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

10

■  Another Option: Co-located planning

One Room

Team 1

Team 2

Team 3

Team 4

POs

Team 6

Team 5

Team 7

Team 8

Scaling Scrum: Scrum of Scrums

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

11

■  Synchronization within the Sprints

■  Ideally after each Daily Scrum (weekly in our project)

■  Participants: Whoever is best suited for current topics, not
necessarily the ScrumMaster

■  Scaling the Daily Scrum questions to team level

■  Additional question: What actions might affect other teams?

■  Keep notes!

Scaling Scrum: Implications

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

12

Multi-Team setups require thorough planning, structured
processes, and a working infrastructure for collaboration

Communication Infrastructure

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

13

■  Email lists

□  Separate lists for each group and team

□  Keep your teammates in the loop
□  Rules and filters are your friends here

□  Anonymous address

■  Trac Wiki

□  Integrated within the ALM solution

□  Lean documentation

■  Facebook page
■  … be creative! (but let us know)

Collaboration Infrastructure

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

14

■  Tracking
  Responsibilities
  Bugs
  Effort
  Appointments

■  Testing
  Functionality
  Build process
  Code quality

■  Sharing
  Code
  Documents

Time Management

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

15

Google Calendar

■  Advantages:

□  Available Everywhere
□  Easy Integration with Outlook & iCal (see “Useful Links”)

■  Overview of team appointments

■  Access granted by our tutors

Application Lifecycle Management

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

16

■  The Swiss Army knive for software development

  Integrating tools for most common activities in one place

  Wiki, Bug Tracking, Time Management, Project Analytics, …
  Some examples: MS Team Foundation Server, Codebeamer,

Plan.io

  Our tool: Agilo (http://www.agile42.com)

Continuous Integration

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

17

■  Problem: How to check continously that your software works?

■  Solution: Continuous Integration Server
  Connected to version control

  Customizable run scripts

  Ideally covering all development branches

  Checkout -> prepare environment -> run tests -> run
statistics

  Examples: CruiseControl, Anthill
  Our system: Hudson

Code Metrics

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

18 ■  Measured code complexity with Flog

■  http://ruby.sadi.st/Flog.html

■  Example input class and report

■  Other Ruby complexity tools: Roodi, Saikuro

■  Basic Information also available (LoC, No. of classes, etc.)

“Flog shows you the most torturous code you wrote. The
more painful the code, the higher the score.”

Test#blah: (11.2)
 6.0: eval
 1.2: branch
 1.2: ==
 1.2: puts
 1.2: assignment
 0.4: lit_fixnum

Version Control Systems

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

19

■  Repository to store the configuration items

■  Versioning

■  Dealing with variants: branches

■  Access control
□  Authentication, authorization

□  Locking

□  Concurrent development

■  Reporting

□  How many versions, variants, changes, persons

□  History of changes

Centralized vs. Distributed VCS

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

20

User A

Central Repository

User B

User C

Commit
Checkout
Update

? ?
VS.

User C

User A

User B

Central
Repository

Push

Pull

Pull
Pull

Commit
Diff

GIT

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

21

■  Developed in 2005 by Linus Torvalds for managing the source
code of the linux kernel

■  Non-linear development

■  No central server required
■  Cryptographic security of project history

■  Foundation for various useful tools

Project Repository Setup

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

22

Main Repository

Master
Branch

Team
Branches

Team Repository
(optional)

Master
Branch

Feature
Branch 1

Developer Repository
(Local)

Master
Branch

Stable
Tag

Feature
Branch n

Feature
Branch 1

Feature
Branch n

A Git Workflow for Feature Development

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

23

1.  Pull from the master repository to update your local master

$> git pull origin master

2.  Checkout a branch for the new feature
$> git checkout –b 12-add-authors

3.  Work on the branch with frequent commits

Git Workflow: continued

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

24
4.  Rebase against the master branch

$> git fetch origin master

$> git rebase origin/master

5.  Clean up your branch history

$> git rebase –i origin/master

6.  Merge your changes to the master

$> git checkout master

$> git merge 12-add-authors

7.  Push your changes upstream

4.  $> git push origin master

Git Workflow: A Shortcut

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

25

Git extension for working with such branching models

■  Installation from source, through macports, or using an installer

■  Creates new commands for git

■  Resulting Workflow:
1.  $> git flow init (only required once)

2.  $> git flow feature start 12-add-authors

3.  Do your work

4.  $> git flow feature finish 12-add-authors

Literature

■  General literature

□  Swicegood, T.: Pragmatic Guide to Git, 2010 (Git)

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

26

Useful Links

■  http://blog.docx.org/2009/08/19/google-kalender-in-outlook-
einbinden/

■  http://www.google.com/support/calendar/bin/answer.py?
hl=en&answer=99358#ical

■  http://www.agile42.com

■  http://hudson-ci.org/

■  http://eagain.net/articles/git-for-computer-scientists/

■  http://reinh.com/blog/2009/03/02/a-git-workflow-for-agile-
teams.html

■  http://tbaggery.com/2008/04/19/a-note-about-git-commit-
messages.html

■  http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/

■  http://github.com/nvie/gitflow

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

27

Next Week: Scrum Test Drive

■ Due til Tuesday 3pm: Select your ScrumMaster

■ Lego Exercise

■ 11:00 – 12:30: Group Hasso
■ 13:30 – 15:00: Group Larry
■ The other group meanwhile gets to talk about the

architecture and is provided with a GIT
introduction

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

28

Thank you for
your time!

EPIC | SWT2 | Chapter 4: Collaboration Environment | WS2010/2011

29

