Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

sy
S
L
e et T
+ oyl m||||||||||||||||||||||||||| ||"!"'"l"'“l"||l' "!

BDD and Testing
(in Rails)

Software Engineering |l

Agenda

Why Behavior-driven Design (BDD)?

Building Blocks of Tests and BDD

Testing Tests & Hints for Successful Test Design
Outlook

BN e

BDD and Testing — Software Engineering Il — WS 2014/15

Agenda

1. Why Behavior-driven Design (BDD)?
m Goals of Automated Testing
m The Case for BDD
m Writing Software that Matters
2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

Goals of Automated Developer Testing L

Feature 1: Website registration

Developer 1 (no TDD/BDD, browser- | Developer 2 (with TDD/BDD, almost

based testing) no browser testing)

Minute 5: working registration page Minute 5: working test
Minute 10: working implementation

Minute 8: feature is tested (3 times
i Hre | B) Minute 10.30: feature is tested (3 times)

Assumptions: 1min manual testing, 10s automatic test

BDD and Testing — Software Engineering Il — WS 2014/15

Goals of Automated Developer Testing L

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser- Developer 2 (with TDD/BDD, almost no
based testing) browser testing)

Minute 11: implemented Minute 12.30: test ready

Minute 14: tested (3 times) Minute 15.30: implemented

Minute 16.00: tested (3 times)

BDD and Testing — Software Engineering Il — WS 2014/15

Goals of Automated Developer Testing L

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser- Developer 2 (with TDD/BDD, almost no
based testing) browser testing)

Minute 11: implemented Minute 12.30: test ready

Minute 14: tested (3 times) Minute 15.30: implemented

Minute 17: refactoring ready Minute 16.00: tested (3 times)

Minute 19: tested feature 1 Minute 19: refactoring ready

Minute 21: tested feature 2 Minute 19.10: tested

Minute 22: committed Minute 20.10: committed

BDD and Testing — Software Engineering Il — WS 2014/15

Goals of Automated Testing

m Finding errors faster

m Better code (correct, robust, maintainable)
m Automated testing are used more frequently
m Easier to add new features

m Easier to modify existing features

m BUT
0O Tests might have bugs
0O Test environment != production environment
0 Code changes break tests
O ...

=» we’ll cover a bit of this in this lecture

BDD and Testing — Software Engineering Il — WS 2014/15

Agenda

1. Why Behavior-driven Design (BDD)?
m Goals of Automated Testing
m The Case for BDD
m Writing Software that Matters
2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

How Traditional Projects Fall

m Delivering late

m Delivering over budget

m Delivering the wrong thing
m Unstable in production

m Costly to maintain

BDD and Testing — Software Engineering Il — WS 2014/15 9

Why Traditional Projects Fall L

m Smart people trying to do good work
m Stakeholders are well intended

Process in traditional projects

m Much effort for
0 Documents for formalized hand-offs
0 Templates
0 Review committees

[...

BDD and Testing — Software Engineering Il — WS 2014/15

10

Why Traditional Projects Fall

The later we find a defect, the more expensive to fix it!
Does front-loading a software development process make sense?

Reality shows:
m Project plans are wonderful
m Adjustments/assumptions are made during analysis, design, code
m Re-planning takes place
m Example: testing phase
0 Tester raises a defect
0 Programmer claims he followed the specification
0 Architect blames business analyst etc.
O =2 exponential cost

BDD and Testing — Software Engineering Il — WS 2014/15

11

Why Traditional Projects Fall

m People are afraid of making changes
m Unofficial changes are carried out

m Documents get out of sync

...

Again, why do we do that!?
To minimize the risk of finding a defect to late...

BDD and Testing — Software Engineering Il — WS 2014/15

12

A Self-Fulfilling Prophecy

m We conduct the front-loaded process to minimize exponential costs of
change

0O Project plan

0 Requirements spec

0 High-level design documents

0 Low-level desigh documents
m This process causes the exponential costs of change!
=> A self-fulfilling prophecy

This makes sense for a bridge, ship, or a building
but Software (and Lego) are EASY to change!

BDD and Testing — Software Engineering Il — WS 2014/15

13

The Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

http://agilemanifesto.org/

BDD and Testing — Software Engineering Il — WS 2014/15 1 4

http://agilemanifesto.org/
http://agilemanifesto.org/

How Agile Methods Address
Project Risks

No longer late or over budget
m Tiny iterations
m Easy to calculate budget
m High-priority requirements first

No longer delivering the wrong thing

m Strong stakeholder communication
m Short feedback cycles

BDD and Testing — Software Engineering Il — WS 2014/15

15

How Agile Methods Address
Project Risks

No longer unstable in production
m Delivering each iteration
m High degree of automation

No longer costly to maintain

m Maintenance mode starting with Sprint 2
m Maintenance of multiple versions during development

BDD and Testing — Software Engineering Il — WS 2014/15

16

The Cost of Going Agile

Outcome-based planning

m no complete detailed project plan
Streaming requirements

W 3 new requirements process
Evolving design

m no complete upfront design =» flexible
Changing existing code

m need for refactoring

BDD and Testing — Software Engineering Il — WS 2014/15

17/

The Cost of Going Agile

Frequent code integration

m continuous integration
Continual regression testing

m add nth feature; test n-1 features
Frequent production releases

m organizational challenges
Co-located team

m keep momentum

BDD and Testing — Software Engineering Il — WS 2014/15

18

Agenda

1. Why Behavior-driven Design (BDD)?
m Goals of Automated Testing
m The Case for BDD
m Writing Software that Matters
2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

19

Writing Software that Matters

“BDD is about implementing an application by describing its behavior
from the perspective of its stakeholders”

Principles
1. Enough is enough
2. Deliver stakeholder value

3. It’s all behavior

BDD and Testing — Software Engineering Il — WS 2014/15

20

BDD Cycle 0

red
/U;t Te)'

refactor 4 green

refa tor
\®

Acceptance Tests /

N

Adapted from
[Chelimsky et al.:
The Rspec Book, 2010]

BDD and Testing — Software Engineering Il — WS 2014/15 2 1

Maximum BDD Pyramid

2°

Vision

All Stakeholders, one statement
m Example: Improve Supply Chain; Understand Customers Better

Core stakeholders have to define the vision
m Incidental stakeholders help understand
0 what is possible
0 at what cost
0 with what likelihood

BDD and Testing — Software Engineering Il — WS 2014/15

23

Goals

m How the vision will be achieved.
m Examples
0O Easier ordering process
0 Better access to suppliers’” information

BDD and Testing — Software Engineering Il — WS 2014/15

24

Epics

m Huge themes / feature sets are described as an “epic”
m Too high level to start coding but useful for conversations
m Examples

0 Reporting
0 Customer registration

BDD and Testing — Software Engineering Il — WS 2014/15

25

Use Case | Features

m Describe the behavior we will implement in software
m Can be traced back to a stakeholder
m Warning: do not directly start at this level
m |s it a waterfall process?
0O Yes: we think about goals to be achieved
0 No: we just do enough

m Explain the value/context of a feature to stakeholders = not too much
detail

m Features deliver value to stakeholders

BDD and Testing — Software Engineering Il — WS 2014/15

26

User Stories

m Stories are demonstrable functionality
m Attributes (INVEST)
0 Independent
0 Negotiable
0 Valuable (from a business Point of View)
0 Estimable
0 Small enough to be implemented in one iteration
0 Testable
m 1 Feature = 1..n User Stories
m Stories should be vertical (e.g., no database-only stories)
m User stories are a token for conversations

BDD and Testing — Software Engineering Il — WS 2014/15

2/

User Stories

m Story content
O Title
0 Narrative
— Description, reason, benefit
— “As a <stakeholder>, | want <feature> so that <benefit>"
— “In order to <benefit>, a <stakeholder> wants to <feature>"
0 Acceptance criteria

BDD and Testing — Software Engineering Il — WS 2014/15

28

Scenarios, Scenario Steps,
Test Cases

m 1 User Story =2 1..n scenarios
m Each scenario describes one aspect of a User Story
m Describe high-level behavior

m 1 scenario = m scenario steps + step implementation
0 Given — When — Then (Cucumber)

“un,

0O scenario “”; <steps>; end (RSpec)

m 1 scenario step = 0..i tests (e.g., in RSpec)
m Describe low-level behavior

BDD and Testing — Software Engineering Il — WS 2014/15

29

BDD Implementations

Behavior-driven development (BDD)
m Story-based definition of application behavior
m Definition of features (feature injection)
m Driven by business value (outside-in)
Cucumber
m Write test cases in a domain-specific language
m Pro: Readable by non-technicians
m Cons:
O Translation to Ruby
O directory structure
RSpec
m Integration tests written in plain Ruby
m Pro: No translation overhead

m Con: Barely readable by domain experts

BDD and Testing — Software Engineering Il — WS 2014/15

30

Cucumber Example

Scenario: Add a simple author
Given I am on the authors page
When I follow "Add author”
And I fill in the example author
And I press "Add"
Then there should be the example author
And I should be on the authors page

BDD and Testing — Software Engineering Il — WS 2014/15

31

Cucumber Overview

m Given — When — Then

m Features are located in features/*.feature

m Each line is a “step” that is implemented in Ruby (Capybara)

m Steps are located in features/step _definitions/ I

m Interpreted via regular expressions
http://github.com/jnicklas/capybara

BDD and Testing — Software Engineering Il — WS 2014/15

32

http://github.com/jnicklas/capybara

RSpec Example L

feature “Author Management”

scenario “should be possible to add an author and after clicking on
‘add’ it should appear on the next page, which shows the overview”

visit authors_path

click_on “add_author”

fill in :name, :with “Hemmingway”

click_on “Add”

page.should have content(“Hemmingway”)
end

end

BDD and Testing — Software Engineering Il — WS 2014/15

33

Verdict?

m Discussion 1: Which one is easier to understand ?
O By programmers
0O By business stakeholders

m Discussion 2: Which is easier to implement?
m Discussion 3: Which one to choose?
0O In this project?

O In other projects?

More opinions:
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-

testing.html
http://cukes.info

BDD and Testing — Software Engineering Il — WS 2014/15

34

http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://cukes.info
http://cukes.info

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Test Data

Test Doubles

Setup and Teardown

Model Tests

View Tests

Controller Tests

Routing Tests

Outgoing Mail Tests

Helper Tests

Integration and Acceptance Tests
Testing Tests & Hints for Successful Test Design
4. Outlook

w

BDD and Testing — Software Engineering Il — WS 2014/15

35

Test::Unit vs. RSpec

m Test::Unit comes with Ruby

class UserTest < Test::Unit::TestCase
def setup
@user = User.new
end

def test_name_setter
assert_nil @user.name, "User's name did initialized to something
other than nil."
@user.name = "Chuck"
assert_equal @user.name, "Chuck”, "@user did not return 'Chuck’
when 1t was called.”
end
end

BDD and Testing — Software Engineering Il — WS 2014/15

36

Test::Unit vs. RSpec

m RSpec has syntactical sugar in it

define "User" do
before(:each) do
@user = User.new
end

it "should assign a value to the name when the setter is called and
return it when the getter is called" do
@user.name.should be_nil

@user.name = "Chuck"
@user.name.should equal "Chuck"
end
end
We'll use RSpec http://teachmetocode.com/articles/rspec-vs-testunit/

37

BDD and Testing — Software Engineering Il — WS 2014/15

http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Test Data

Test Doubles

Setup and Teardown

Model Tests

View Tests

Controller Tests

Routing Tests

Outgoing Mail Tests

Helper Tests

Integration and Acceptance Tests
Testing Tests & Hints for Successful Test Design
4. Outlook

w

BDD and Testing — Software Engineering Il — WS 2014/15

38

Test Data Overview

m Fixtures
O Fixed state at the beginning of a test
0 Assertions can be made against this state

m Factories

0 Blueprint for models
0 Used to generate test data locally in the test

BDD and Testing — Software Engineering Il — WS 2014/15

39

Why Fixtures are a Pain

m Fixtures are global
0 Only ONE set of data
0O Every test has to deal with ALL test data

m Fixtures are spread out
0 Own directory
0 One file per model = data for one test is spread out over many files
0 Tracing relationships is a pain

BDD and Testing — Software Engineering Il — WS 2014/15

40

Why Fixtures are a Pain

m Fixtures are distant
0 A test fails
O It is unclear which data is used
0 How are values computed?
0 assert_equal(users(:ernie).age + users(:bert).age), 20)

m Fixtures are brittle
0 Tests rely on this data
0 Tests break when data is changed
0 Data requirements may be incompatible

BDD and Testing — Software Engineering Il — WS 2014/15

41

Fixing Fixtures with Factories

Test data should be
m Local (defined as closely as possible to the test)
m Compact (easy and quick to generate; even complex data sets)
m Robust (independent to other tests)

=» Data factories

BDD and Testing — Software Engineering Il — WS 2014/15

42

Data Factories

m Blueprint for sample instances
m Rails tool support
0O Factory Girl (our choice)
0 Machinist
0O Fabrication
O FixtureBuilder
0O ObjectDaddy
O ...
O https://www.ruby-toolbox.com/categories/rails fixture replacement

m Similar structure
0O Syntax for creating the factory blueprint
0O API for creating new objects

BDD and Testing — Software Engineering Il — WS 2014/15

43

https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement

Defining Factories

This will guess the User class
FactoryGirl.define do
factory :user do
first_name 'John'
last_name 'Doe’
admin false
end

This will use the User class (Admin would have been guessed)
factory :admin, :class => User do
first_name 'Admin'
last_name 'User'
admin true
end
end

BDD and Testing — Software Engineering Il — WS 2014/15

44

Using Factories

m Build strategies: build, create < standard, attributes_for, stub

Returns a User instance that's not saved
user = Factory.build(:user)

Returns a saved User instance

user = Factory.create(:user)

user = Factory(:user)

Returns a hash of attributes that can be used to build a User
1nstance

attrs = Factory.attributes_for(:user)

Returns an object with all defined attributes stubbed out
stub = Factory.stub(:user)

BDD and Testing — Software Engineering Il — WS 2014/15

45

Attributes

#Lazy attributes
factory :user do

% .

activation_code { User.generate_activation_code }
end

#Dependent attributes
factory :user do

first_name 'Joe'

last_name 'Blow'

email { "#{first_name}.#{last_name}@example.com".downcase }
end

Factory(:user, :last_name => 'Doe').email
=> "joe.doe@example.com"

BDD and Testing — Software Engineering Il — WS 2014/15

46

Associations

factory :post do
.

author
end

factory :post do

.

association :author, :factory => :user, :last_name => 'Writely'
end

Builds and saves a User and a Post
post = Factory(:post)
post.new_record? # => false
post.author.new_record # => false

Builds and saves a User, and then builds but does not save a Post
post = Factory.build(:post)

post.new_record? # => true

post.author.new_record # => false

BDD and Testing — Software Engineering Il — WS 2014/15

47

Inheritance

the "title' attribute 1s required for all posts
factory :post do

title 'A title'
end

the 'approver' association 1s required for an approved post
assoctation
factory :approved_post, :parent => :post do
approved true
:approver, :factory => :user
end

BDD and Testing — Software Engineering Il — WS 2014/15

48

Sequences for Unique Values

Defines a new seguence
FactoryGirl.sequence :email do Inl
"person#{n}@example.com”
end
Seguences can be used as attributes

Factory.next :email factory :user do
=> "personl@example.com” email

end
Factory.next :email
=> "personZ@example.com” # in lazy attributes

factory :invite do
invitee { Factory.next(:email) }
end

in-line sequence for a factory
factory :user do
f.sequence(:email) {Inl "person#{n}@example.com™ }

one 49
BDD and Testing — Software Engineering Il — WS 2014/15

Callbacks

m after_build - called after a factory is built (via Factory.build)
m after create - called after a factory is saved (via Factory.create)

m after_stub - called after a factory is stubbed (via Factory.stub)

factory :user do
after_build { luser| do_something_to(user) }

end

factory :user do
after_build { luser| do_something_to(user) }
after_create { luserl| do_something_else_to(user) }
after_create { then_this }

end

BDD and Testing — Software Engineering Il — WS 2014/15

50

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
m Test Data

m Test Doubles
— Introduction
— Stubs in Detail
— Mocks in Detail

m Setup and Teardown
m Model Tests

m View Tests

m Controller Tests

m ..
3. Testing Tests
4. Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

51

Isolation of Test Cases

Tests should be independent - -
New bug in a model = only tests related to this model shouls
How to achieve this?

m Don’t share complex test data ¢/

m Don’t use complex objects

Steve Freeman, Nat Pryce: Growing Object-Oriented Software,
Guided by Tests

BDD and Testing — Software Engineering Il — WS 2014/15 5 2

Test Doubles

I”

Fake objects used in place of “real” ones
Purpose: automated testing
Used when
m real object is unavailable
m real object is difficult to access or trigger
m following a strategy to re-create an application state
O

limiting scope of the test to the object/method currently under
test

BDD and Testing — Software Engineering Il — WS 2014/15

53

Veritfying Behavior During a Test

Usually: test system state AFTER a test
With test doubles: test system behavior!

!

L T

BDD and Testing — Software Engineering Il — WS 2014/15

54

Stubs vs. Mocks

Stub (passive)
m Returns a predetermined value for a method call
m Does not actually call the method

thing.stubs(:name).returns("Fred")

-

Mock (more aggressive)
m In addition: set an assertion

m If expectation is not met - test failure
thing.expects(:name).returns{"Fred")

BDD and Testing — Software Engineering Il — WS 2014/15

55

Why to have Mocks?

Makes sense?

thing.stubs(:name).returns{("Fred”)
thing.name.should equal "Fred"”

Makes more sense?
thing.expects(:name).returns("Fred"”)

BDD and Testing — Software Engineering Il — WS 2014/15

56

Ruby Test Double Frameworks

Rspec-mocks (http://github.com/rspec/rspec-mocks)

Mocha (http://mocha.rubyforge.org/)

FlexMock (http://flexmock.rubyforge.org/)

https://www.ruby-toolbox.com/categories/mocking

BDD and Testing — Software Engineering Il — WS 2014/15

57

http://github.com/rspec/rspec-mocks
http://github.com/rspec/rspec-mocks
http://github.com/rspec/rspec-mocks
http://mocha.rubyforge.org/
http://flexmock.rubyforge.org/
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD
O Test Data
0O Test Doubles
— Introduction
— Stubs in Detail
— Mocks in Detail
0O Setup and Teardown
O Model Tests
O View Tests
0 Controller Tests
O ...
m Testing Tests
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

58

Stubs

Replacement for one or many parts of an object
Normal method call is not happening
Returns a predefined value if called

it "is a sample stub"” do
stubby = stub(:name == "Paul",
stubby.name.should equal "Paul™
end

You can only call stubby.name or stubby.weight
Else: error
Or: stub_everything(...) =2 nil

BDD and Testing — Software Engineering Il — WS 2014/15

:weight => 100)

59

Stubbing Instances

it "stubs an object" do
stub_project = Project.new(:name => "SWT2")
stub_project.stubs(:name)
assert_nil(stub_project.name)

end

it "stubs another object” do
stub_project = Project.new(:name => "SWTZ2"
stub_project.stubs(:name).returns("SWT2")
stub_project.name.should == "SWTZ2"

end

BDD and Testing — Software Engineering Il — WS 2014/15

D,

60

Stubbing Classes L

i1t "stubs a class" do

Projec.stubs(:find).returns{Project.new(:name => "SWT2"))
project = Project.find(1l)
project.name.should equal "SWTZ2"

end

A specific instance is returned
Database is not touched

“find” cannot be verified anymore BUT
Tests based on “find” can be isolated
=>» just test the logic that is under test

BDD and Testing — Software Engineering Il — WS 2014/15 6 1

Multiple Return Values

>> sStubby = Project.new

=> #<Project id: nil =

>> Stubby.stubs(:user_count).returns(l, 2)

=> #<Mocha: :Expectation:0x221e470... >, side_effects[]
>> stubby.user_count

=> 1

>> sStubby.user_count

== 2

>> stubby.user_count

== 2

stubby.stubs(:user_count).returns(l) .then.returns(2)

BDD and Testing — Software Engineering Il — WS 2014/15

62

Stub Returns and Raises ﬂ

stubby.stubs(:user_count) .raises(Exception, "oops'™)

stubby.stubs(:user_count).returns{(l).then.raises(Exception)

Project.any_instance.stubs(:save).returns(false)

BDD and Testing — Software Engineering Il — WS 2014/15 6 3

Examples & Hints

Lire 1

test "fail create gracefully"” do
assert_no_difference("Project.count') do
Project.any_instance.stubs(:save) .returns{false)

post :create, :project => {:name => 'Project Runway'}
assert_template("new')
end

end

test "fail update gracefully" do
Project.any_instance.stubs(:update_attributes).returns(false)
put :update, :id => projects(:huddle).id, :project => {:name => 'fred'}
assert_template("edit"')
actual = Project.find(projects{:huddle).id)
assert_not_equal('"fred', actual.name)

end

m No guarantee that find returns the exact object you expect

m any_instance is valid only for instances created after you declared the stub (not for

BDD and Testing — Softwglrg(gnlgjlrre%irg P;t\ﬁS)ZOM/lS 6 4

Hints for any_instance

m No guarantee that find returns the exact object you expect

m any_instance is valid only for instances created after you declared the
stub (not for fixture data)

BDD and Testing — Software Engineering Il — WS 2014/15

65

Stubs with Parameters (with()) ﬂ

it "stubs a class again" do
Project.stubs(:find) .with(l).returns{Project.new(:name => "SWT2"))

Project.stubs(:find) .with(2).returns{(Project.new(:name => "TIZ2"))
Project.find(1l).name.should equal "SWTZ2"

Project.find(Z2).name.should equal "TIZ"

Project.find(3).should be_nil \ Unexpected invocation
end

Project.stubs(:find) .with(nil).raises(Exception)

proj = Project.new()
proj.stubs(:status) .with { |value| wvalue
proj.stubs(:status) .with { |value| wvalue

returns{ "Actiwve ')
returns{ “"AsTeep'™)

% 2
% 3

0 }.
0 }.

BDD and Testing — Software Engineering Il — WS 2014/15 UV

iInstance_of(), Not, any_of(), and
regexp_matches()

proj = Project.new()

proj.stubs(:tasks_before).with(instance_of(Date)).returns{3)
proj.stubs(:tasks before).with(instance_ of(5tring)).raises(Exception)

proj = Project.new()

proj.stubs(:tasks_before) . .with(Not{(instance_of(Date))).returns(3)

proj.stubs(:thing) . .with(any_of('a', 'b"'")).returns("abababa')

proj.stubs(:thing) ..with(any_of(instance_of(5tring),
instance_of(Integer))).returns("Argh'™)

proj.stubs(:thing) ..with(regexp_matches(/+«_user/)).returns(”A User!™)

http://mocha.rubyforge.org/

BDD and Testing — Software Engineering Il — WS 2014/15 6 7

http://mocha.rubyforge.org/

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD
O Test Data
0O Test Doubles
— Introduction
— Stubs in Detail
— Mocks in Detail
0O Setup and Teardown
O Model Tests
O View Tests
0 Controller Tests
O ...
m Testing Tests
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

68

Mocks

m Mock = Stub + attitude
m Demands that mock parameters are called (default: once)

it "1is a sample mock" do
mocky = mock({:name => "Rocky", :weight => 100)
mocky.name.should equal "Roclky"

end

m proj = Project.new
proj.expects(:name) .once
proj.expects(:name) .twice
proj.expects(:name) .at_least_once
proj.expects(:name).at_most_once
proj.expects(:name).at_least(3)
proj.expects(:name).at_most(3)
proj.expects(:name).times(5)
proj.expects(:name).times(4..6)

BDD and Testing Eog\ﬂrjEﬁg%E#—%Eagﬁ name) - Never

69

Mock Objects and Behavior-Driven L
Development

m Example of a controller test

BDD and Testing — Sof

test "project timeline index should be sorted correctily"” do
set_current_project(:huddle)
get :show, :id => projects(:huddle).id
expected_keys = assigns(:reports).keys.sort.map{ |d]|] d.to_s(:db) }
assert_equal(["2009-01-06", "2009-01-07""]1, expected_keys)
assert_equal(
[status_reports(:ben_tue).id, status_reports{:jerry_tue).id],
assigns({: reports) [Date.parse("2009-01-06")] .map(&:1d))

end
VS.

test "mock show test” do
set_current_project(:huddle)
Project.any_instance.expects(:reports_grouped_by_ day) .returns(
{Date.today => [status_reports{:aaron_tue)]})
get :show, :id => projects(:huddle).id
assert_not_nil assigns(:reports)
end .7()

w

Advantages and Disadvantages

m Disadvantages
0 Mismatch between mocked model and real model
— Data type
— Semantic
— =» integration tests
O Risk to test predefined data (non-sense)

0O Tests might depend on internal structures of mocked object
- brittle while refactoring

m Advantages
0O The test is focused on behavior
O Speed
0O Isolation of tests (failure in model does not affect controller test)

BDD and Testing — Software Engineering Il — WS 2014/15

/1

Test Double Dos & Don'ts

m You replace an object because it is hard to create in a test environment
=» use a stub

m minimize number of mocked methods
m #mocks 1
0 =@ possibility to run out of sync with real implementation{

0 =P test too large? Poor object-oriented design?

m Don’t assert a value you set by a test double (false positives)

BDD and Testing — Software Engineering Il — WS 2014/15

/2

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD
O Test Data
0 Test Doubles
0 Setup and Teardown
0 Model Tests
0 View Tests
0 Controller Tests
a...
m Testing Tests
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

/3

Setup and Teardown

Rspec - before(:each) -

describe Account do
before(:each) do
daccount = Account.new
end

it "should have a balance of $S0" do
faccount.balance.should == Money.new(0)
end

after(:each) do
this is here as an example, but is not really
necessary. Since each example is run in its

own object, instance wvariables go out of scope

between each example.
Gaccount = nil
end
end

o Httpli://www.relishapp.com/rspec/rspec—core/v/2—0/docs/hooks/before-and—after—
ooks

BDD and Testing — Software Engineering Il — WS 2014/15

74

https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks

Setup and Teardown
RSpec

describe "Search page"” do
before(:all) do

Ebrowser = Watlir::Browser.new

end

it "should find all contacts"”

end

after(:all) do
@browser.kill! rescue nil
end
end

BDD and Testing — Software Engineering Il — WS 2014/15

do

/5

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

/6

Model Tests

m A Rails model
0 accesses data through an ORM
O implements business logic
O is “fat”

m Model tests

0 Model tests in Rails = Test Framwork + test data + setup/teardown +
test logic + additional assertions

00 Easiest tests to write

BDD and Testing — Software Engineering Il — WS 2014/15

/7

Hints for Model Tests

m Tests should cover ~¥100% of the model code
m Do not test framework functionality like “belongs_to”
m Test your validations
m How many tests? Let tests drive the code = perfect fit
m What comes out?

0 One test for the “happy-path case”

0 One test for each branch

0 Corner cases (nil, wrong values, ...) < if appropriate
m Keep each test small!

BDD and Testing — Software Engineering Il — WS 2014/15

/8

How many Assertions per Test?

m If 1 call to a model =» many changes:
0 #Assertions 1+ =¥ clarity and cohesion {t
O #Assertions 11 =2 test independece {1
=>» Use context & describe and have 1 assertion per test

BDD and Testing — Software Engineering Il — WS 2014/15

/9

Test Run

For each file For each test

Identify tests Run setup
to run T

‘ Identify files |
to run
Run test

Run
teardown

Database
reset

BDD and Testing — Software Engineering Il — WS 2014/15 8 O

Initial Database
preset

Automate the process with
Autotest

m Automate testing with Autotest
(https://github.com/rspec/rspec/wiki/autotest)

m Run by using: autotest —rails
m Use FSEvent to determine file changes

m Automatically determines which tests to run again (remember:
Convention over Configuration)

m Can be integrated with Growl on Macs ©

BDD and Testing — Software Engineering Il — WS 2014/15

81

https://github.com/rspec/rspec/wiki/autotest

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

82

View Tests

m A Rails view
0 Has only minimal logic
0 Does never call the database!
0O Presents the data given by the controller

m Challenges for view tests
O Time-intensive
0 How to test look & feel?
O Brittle w.r.t. re-designs

BDD and Testing — Software Engineering Il — WS 2014/15

83

View Tests

m Specify and verify logical and semantic structure

m Goals
0O Validate that view layer runs without error
0 Check that data gathered by the controller is presented as expected
— message when passing empty collections
— pagination upon more than x elements

0O Validate security-based output (e.g., for admins)

m Do not
0 Validate HTML markup
O Evaluate look & feel
O Test actual text

BDD and Testing — Software Engineering Il — WS 2014/15

84

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

85

Controller Tests

m A Rails controller
0 Is “skinny”
O Calls the ORM
0 Calls the model
O Passes data to the view

m Goal of controller tests
0 Simulate a request
0O Verify the result

m Subclass of ActionController::TestCase
(http://api.rubyonrails.org/classes/ActionController/TestCase.html)

m and ActiveSupport:TestCase
(http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html)

BDD and Testing — Software Engineering Il — WS 2014/15 8 6

http://api.rubyonrails.org/classes/ActionController/TestCase.html
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html

Controller Tests

m 3 important variables
O controller
O request
O response

m Variables for
O session — session[:key]
O controller variables — assigns|:key]
0O flash —flash[:key]

m Methods for
O get

post

put

delete

xhr (Ajax)

BDD and Testing — Software Engineering Il — WS 2014/15

8/

What to test?

m Remember: Model functionality is tested in model tests!

m Controller tests
0 Verify that user requests trigger
— Model/ORM calls
— that data is forwarded to view
0 Handling of invalid user requests
0 Handling of exceptions potentially raised by model calls
0 Verifying security roles / role-based access control

BDD and Testing — Software Engineering Il — WS 2014/15

88

Background on Controller Tests

m Controller method is called directly
m Routes are NOT evaluated
m Real request parameters are always strings

def create
if current_user.id == params[:id]
allow
el se
deny
end
end

test "I can create”

lTogin_as(@user)

put :create, @Quser.qid

#assert that allowed branch was taken
end

BDD and Testing — Software Engineering Il — WS 2014/15

89

Background on Controller Tests

m By default, views are not rendered
require "spec_helper”

describe WelcomeController do
render_views

describe "index" do
it "renders the index template” do
get :index
response.should contain{"CEM")
end

...
end

BDD and Testing — Software Engineering Il — WS 2014/15

90

Testing the Controller Response

m HTTP status code

m Correct template

m Assertion methods
O response.should redirect_to(...)
0 response.should be _success | be redirect | ...
0 response.should render_template(...)

context "on successful index reqguest" do
it "renders correctly” do
get :index
response.should be_success
response.should render_template(' index')
end
end

BDD and Testing — Software Engineering Il — WS 2014/15

91

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

92

Route Tests

m route_for

route_for(:controller => "hello",
raction => "world").should = "/hello/world"”

m params_from

params_from(:get, "/hello/world”).should ==
{:controller == "hello", :action => "world"}

BDD and Testing — Software Engineering Il — WS 2014/15

93

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

94

Outgoing Mall Tests

m What to validate?
0 Application sends mail when expected
0 Email content is what you expect
m Enable testing
0 Specs for content will be generated along with “rails g mailer”

0O For convenience matchers use email-spec gem
httns://github.com/bmabev/email-snec

" |describe "POST Ssignup (#signup)" do
it "should deliwver the signup email"” do
expect
UserMailer.should_receive(:deliver_signup).
with{("email@example.com™, "Jimmy Bean")
when
post :signup, "Email” => "mail@example.com"”, "Name"
end
end

=1

rIJ.i-mm}rlr

BDD and Testing — Software Engineering Il — WS 2014/15

95

https://github.com/bmabey/email-spec
https://github.com/bmabey/email-spec
https://github.com/bmabey/email-spec

RSpec Testing Mail Content and
Metadata

describe "Signup Email" do
include EmailSpec: :Helpers
include EmailSpec: :Matchers
include ActionController::UrlWriter

before(:all) do
@emalil = UserMailer.create_signup("jojo@hoo.com"”, "Jojo Binks"™)

end

it "should be set to be delivered to the email passed in" do
@email.should deliver_to("jojo@yahoo.com")

end

it "should contain the user's message in the mail body" do

@email.should have_body_text(/Jojo Binks/)
end

it "should contain a 1link to the confirmation 1ink" do
@email.should have_body_text(/#{confirm_account_url}/)

end

it "should have the correct subject" do
@email.should have_subject(/Account confirmation/)

end 9 6

BDD and Test end

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

97/

Helper Tests

m Helpers are filled with “the rest”

m Used as mediator between views and models or
views and controllers

m (Complex) view logic is moved to helpers

module UsersHelper
def diplay_name(wuser)
"#{user.first_name} #{user.last_namel}”™
end
end

it "displays a complete user name” do

@user = User.new(:first_name = "Garry", :last_name = "Meyer")
display_name(Buser).should equal "Garry Meyer"”
end

98

BDD and Testing — Software Engineering Il — WS 2014/15

Agenda

m Why Behavior-driven Design (BDD)?
m Building Blocks of Tests and BDD

d...

0 Model Tests

0 View Tests

0 Controller Tests

0 Routing Tests

0 Outgoing Mail Tests

0 Helper Tests

0 Integration and Acceptance Tests
m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15

99

Integration Tests

m Written by developers for developers

m Test communication of controllers via sessions/cookies
m Verify end-to-end behavior

m Make controller calls

m Verify that expected application states are created

m Similar to controller tests, BUT
0 Not tied to one controller
0 1..n sessions for different users

BDD and Testing — Software Engineering Il — WS 2014/15 1 O O

Test:Unit

test "add friends" do
post "sessions/create', :login => "gquentin", :password => "monkey"
assert_equal (users{:quentin).id, session[:user_id])

get "wusers/show", :id => users(:quentin).qid
xhr :post, "users/toggle_interest"”, :id => users(:aaron).id
assert_equal [users(:aaron).id], session[:interest]

get "users/show', :1d => users(:o0ld_password_holder).id

xhr :post, "users/toggle_interest",
:id => users(:o0ld_password_holder).id

assert_equal [users(:aaron).id, users(:old_password_holder).id].sort,
session[:interest].sort

#testing remowval from the session
xhr :post, "users/toggle_interest",

:id => users(:o0ld_password_holder).id
assert_equal [users(:aaron).id], session[:interest]

get "wusers/show'", :id => users(:rover).id
assert_select "div.interest"” do
assert_select div, :text => "Aaron', :count => 1
assert_select div, :text => "07d", :count => 0

end]-():L
BDD and Testiiend

Multiple Session Example with
Test:Unit

test "user interaction’” do

aaron_session = open_session

quentin_session = open_session

quentin_session.post("sessions/create”, :login => "quentin",
:password => "monkey'")

quentin_session.post("messages/send’, :to => users{:aaron))

aaron_session.post(""sessions/create’”, :login => "aaron",

:password => "monkey')
aaron_session.get("messages/show')
assert_equal{(l, aaron_session.assigns{:messages))
end

102

BDD and Testing — Software Engineering Il — WS 2014/15

Webrat & Capybara

m DSLs for
0 “Browsing the Internet”
O Acceptance testing
m 10 Useful Methods
0O attach_file(field locator, path, content_type = nil)
0O check(field locator)
0 choose(field locator)
O click_button(value)
O click_link(text_or_title _or_id, options = {})
O fill_in(field_locator, options = {})
0 save_and_open_page()
O select(option_text, options = {})
0 uncheck(field locator)
o visit(url = nil, http_method = :get, data = {})

BDD and Testing — Software Engineering Il — WS 2014/15 1 O 3

Capybara improves clarity (1/2)

test "add friends"” do
post "sessions/create’, :login => "guentin", :password => "monkey"”
assert_equal (users(:quentin).id, session[:user_id])

get "users/show", :id => users({:quentin).qid
xhr :post, "users/toggle_interest', :1id => users({:aaron).id
assert_equal [users(:aaron).id], session[:interest]

get "users/show", :1d => users({:o0ld_password_holder).id

xhr :post, "users/toggle_interest"”,
:id => users(:o0ld_password_holder).id

assert_equal [users(:aaron).id, users(:old_password_holder).id].sort,
session[:interest].sort

#testing removal from the session
xhr :post, "users/toggle_interest"”,

:id => users(:old_password_holder).id
assert_equal [users(:aaron).id], session[:interest]

get "users/show", :id => users(:rover).id
assert_select "div.interest"” do
assert_select div, :text => "Aaron"”, :count => 1
assert_select div, :text => "0Td", :count => 0

104
BDD and Testing -end

Capybara improves clarity (2/2

test "add friends" do
visit login_path
fi11_in :login, :with => "quentin"™
fil1l_in :password, :with => "monkey"”™
click_button :login
assert_equal(users(:quentin).id, session[:user_id])

visit users_path(users(:quentin))
click "toggle_ for_aaron"
assert_equal [users(:aaron).id], session[:interest]

visit users_path(users(:o0ld_password_holder))

click "Toggle™

assert_equal [users(:aaron).id, users(:o0ld_password_holder).id].sort,
session[:interest] .sort

visit users_path(users(:o0ld_password_holder))
click "Toggle™
assert_equal [users(:aaron).id], session[:interest]

visit users_path(users(:rover))

assert_select "div.interest"” do
assert_select div, :text => "Aaron'", :count => 1
assert_select div, :text => "Old", :count => 0

e 105
BDD and Testing — Softend

Capybara and Javascript (Rspec &

Cucumber)

it
visit post_path(commented_post)

click_on "edit™
end
fill in ‘comment_content®', with:

click_on "'Edit Comment’
expect(page).to have_content('No,
end
end

describe "when current_user is the comment’'s author",ljs:
*should edit the comment content®

within ("#comment-#{commented_post.comments.first.id}") do

trueido

do

"No, this is the best comment’

this is the best comment’')

m Choses different capybara driver
(e.g., selenium or phantom)S)

m Waiting period for Ajax Calls can be
customised

BDD and Testing — Software Engineering Il — WS 2014/15

| @juvuscript|!
cenario: a simple author

Given I am on the authors page

When I follow "Add author™

And I fill in the example author

And I press "Sawve"”

Then I should be on the authors page
And there should be the example author
And no error should occur

1U

Agenda

m Behavior-Driven Development of MasterMind
m Why Behavior-driven Design (BDD)?

m Building Blocks of Tests and BDD

m Testing Tests & Hints for Successful Test Design
m Outlook

BDD and Testing — Software Engineering Il — WS 2014/15 1 O 7

Testing Tests

m Test coverage
m Fault seeding

m Mutation testing

BDD and Testing — Software Engineering Il — WS 2014/15

108

Test Coverage

m Most commonly used metric for evaluating test suite quality

m Test coverage = executed code during test suite run / all code *100
m 85 loc /100 loc = 85% test coverage

1. Absence of line coverage indicates a potential problem
2. Existence of line coverage means very little

3. In combination with good testing practices, coverage might say
something about test suite reach

4. ~100% test coverage is a by product of BDD

BDD and Testing — Software Engineering Il — WS 2014/15 1 O 9

How to Measure Coverage?’

m Most useful approaches
O Line coverage
0 Branch coverage

m Tool
0 SimpleCov (https://github.com/colszowka/simplecov) - Ruby 1.9+

0 Reov (https://github.com/relevance/rcov) for 1.8

0 Uses line coverage
if (i = 01, 1 += 1, else i—= 1 end

0 =2 100% code coverage although 1 branch wasn’t executed

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 O

https://github.com/colszowka/simplecov
https://github.com/colszowka/simplecov
https://github.com/relevance/rcov

Rcov / SimpleCov

All Files (100.0%) Controllers (100.0%) Models (100.0%) Mailers (100.0%) Helpers (100.0%) Libraries (100.0%) Plugins (100.0%)

All Files (100.0% covered at 1.35 hits/line)

6 files in total. 41 relevant lines. 41 lines covered and O lines missed

Search:
File % covered Lines Relevant Lines Lines cove

Q1 app/controllers/application_controller.rb 100.0 % 5 2 2

Q app/controllers/job_offers_controller.rb 100.0 % 77 34 34

Q1 app/helpers/application_helper.rb 100.0 % 2 1 1

Q app/helpers/job_offers_helper.rb 100.0 % 2 1 1

Q app/models/job_offer.rb 100.0 % 2 1 1

Q app/models/user.rb 100.0 % 7 2 2

Showing 1 to 6 of 6 entries

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 1

Rcov / SimpleCov

- —

def new
@job_offer = JobOffer.new
end

GET /job_offers/1/edit
def edit 0
end

POST /job_offers
POST ~job_offers. json
def create
@job_offer = JobOffer.new(job_offer_params)

respond_to do |formatl
if @job_offer.save
format.html { redirect_to @job_offer, notice: 'Job offer was successfully created.' %

format. json { render action: 'show', status: :created, location: @job_offer }
else
render_errors_and_redirect_to(@job_offer, 'new', format)
end
end
end

Hh

PATCH-PUT /job_offers/1
PATCHA /PUT /job_offers/ 1. json
def update
respond_to do |format]|
if @job_offer.update(job_offer_params)
format.html { redirect_to @job_offer, notice: "'Job offer was successfully updated.' }

112

format. json { head :no_content }

5 Habits of Highly Successful Tests L

m Independence
0 of external test data
0 of other tests (or test order)
m Repeatability
0 Same results each test run
0O Potential Problems
— date (Timecop)
— random numbers (try to avoid them or stub the generation)

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 3

5 Habits of Highly Successful Tests L

m Clarity
0O Test purpose should be immediately understandable
0 Readability
0 How does the test fit into the larger test suite?
0 Worst case:

test "the sum should be 37" do
assert_equal(37, User.all_total_points)
end

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 4

5 Habits of Highly Successful Tests L

m Clarity
0 ...

[Better:
test "total points should round to the nearest integer” do
User.make(:points => 32.1)
User.make(:points => 5.3)
assert_equal (37, User.all_total_points)
end

0 “Debugging is harder than coding”
0 Tests should be simple

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 5

5 Habits of Highly Successful Tests L

m Conciseness

0 Use the minimum amount of code and objects

0 Clear beats concise

0 Writing the minimum amount of tests

0 = tests will be faster

def assert_user_lewvel (points, lewvel)

User.make(:points => points)
assert_equal(level, user.level)

end

def test_user_point_level

assert_user_level(l, "novice')

assert_user_level (501, "apprentice')

assert_user_level (1001, "journeyman'')

assert_user_level (2001, "guru')

assert_user_level (5001, "super jedi rock star'™)

assert_user_level (0, "novice')

assert_user_level (500, "novice')

assert_user_level (nil, "novice') 1 1 6
BDD and Testing — Software Enginend

5 Habits of Highly Successful Tests L

m Robustness
0O Tests the logic as intended
0 Code is correct = tests passes
0 Code is wrong = test does not pass

0 Example: view testing
test "the view should show the project section” do
get :dashboard
assert_select("h2", :text => "My Projects'™)

end
VS.

test "the view should show the project section"” do
get :dashboard
assert_select("hZ2#projects’™)

end

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 7

5 Habits of Highly Successful Tests L

m Robustness

def assert_user_lewvel(points, lewvel)
User.make(:points => points)
assert_equal(level, user.lewvel)
end

def test_user_point_lewvel
assert_user_level (User: :NOVICE_BOUND + 1, "nowvice')

assert_user_level (User: :APPRENTICE_BOUND + 1, "apprentice'’)
And so on...
end

0 But be aware of false positives

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 8

Troubleshooting

Reproduce the error
What has changed?
Isolate the failure
m thing.inspect (p thing)
m Add assertions/prints to your test
m Rails.logger.error
m save_and_open_page
Explain to someone else

BDD and Testing — Software Engineering Il — WS 2014/15 1 1 9

Manual Fault Seeding

Introduce a fault into your program
Run tests
Minimum 1 test should fail

Warning: do not leave the fault in the software!

BDD and Testing — Software Engineering Il — WS 2014/15 1 2 O

Mutation Testing

Mutant: Slightly modified version of the program under test, differing
from it by a small, syntactic change

if month > 12 then To create mutants, replace:
vear += month /S0 12 if =>»if not
month = month 2 12 12 13

end = >c<

| should pass on

Test = J
Cases .
should fail on M

BDD and Testing — Software Engineering Il — WS 2014/15 1 2 1

Mutation Testing

m Ruby tool: Heckle (http://ruby.sadi.st/Heckle.htmil)

1. Your tests should pass

2. You run Heckle to change your code

3. Test(s) should fail

4. Write tests for surviving mutants if useful

BDD and Testing — Software Engineering Il — WS 2014/15 1 2 2

http://ruby.sadi.st/Heckle.html

Outlook (Nov 22, 1t slot)

m Retrospective Sprint #1
m Code Review Techniques
m Scrum Tips & Tricks

BDD and Testing — Software Engineering Il — WS 2014/15 1 2 3

