

1. Why Behavior-driven Design (BDD)?

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

1. Why Behavior-driven Design (BDD)?

■ Goals of Automated Testing

■ The Case for BDD

■ Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost
no browser testing)

Minute 5: working registration page

Minute 8: feature is tested (3 times)

Minute 5: working test
Minute 10: working implementation
Minute 10.30: feature is tested (3 times)

Feature 1: Website registration

Assumptions: 1min manual testing, 10s automatic test

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 17: refactoring ready

Minute 19: tested feature 1

Minute 21: tested feature 2

Minute 22: committed

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Minute 19: refactoring ready

Minute 19.10: tested

Minute 20.10: committed

Feature 2: Special case for feature 1

■ Finding errors faster

■ Better code (correct, robust, maintainable)

■ Automated testing are used more frequently

■ Easier to add new features

■ Easier to modify existing features

■ BUT

□ Tests might have bugs

□ Test environment != production environment

□ Code changes break tests

□ …

  we’ll cover a bit of this in this lecture

1. Why Behavior-driven Design (BDD)?

■ Goals of Automated Testing

■ The Case for BDD

■ Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

■ Delivering late

■ Delivering over budget

■ Delivering the wrong thing

■Unstable in production

■ Costly to maintain

■ Smart people trying to do good work

■ Stakeholders are well intended

Process in traditional projects

■Much effort for

□ Documents for formalized hand-offs

□ Templates

□ Review committees

□…

Planning Analysis Design Code Test Deploy

The later we find a defect, the more expensive to fix it!

Does front-loading a software development process make sense?

Reality shows:

■ Project plans are wonderful

■ Adjustments/assumptions are made during analysis, design, code

■ Re-planning takes place

■ Example: testing phase

□ Tester raises a defect

□ Programmer claims he followed the specification

□ Architect blames business analyst etc.

□ exponential cost

■ People are afraid of making changes

■Unofficial changes are carried out

■ Documents get out of sync

■ ...

Again, why do we do that!?

To minimize the risk of finding a defect to late…

■We conduct the front-loaded process to minimize exponential costs of
change

□ Project plan

□ Requirements spec

□High-level design documents

□ Low-level design documents

■ This process causes the exponential costs of change!

 A self-fulfilling prophecy

This makes sense for a bridge, ship, or a building
but Software (and Lego) are EASY to change!

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

http://agilemanifesto.org/

http://agilemanifesto.org/
http://agilemanifesto.org/

No longer late or over budget

■ Tiny iterations

■ Easy to calculate budget

■High-priority requirements first

No longer delivering the wrong thing

■ Strong stakeholder communication

■ Short feedback cycles

No longer unstable in production

■ Delivering each iteration

■High degree of automation

No longer costly to maintain

■Maintenance mode starting with Sprint 2

■Maintenance of multiple versions during development

Outcome-based planning

■ no complete detailed project plan

Streaming requirements

■ a new requirements process

Evolving design

■ no complete upfront design  flexible

Changing existing code

■ need for refactoring

Frequent code integration

■ continuous integration

Continual regression testing

■ add nth feature; test n-1 features

Frequent production releases

■ organizational challenges

Co-located team

■ keep momentum

1. Why Behavior-driven Design (BDD)?

■ Goals of Automated Testing

■ The Case for BDD

■ Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design

4. Outlook

“BDD is about implementing an application by describing its behavior
from the perspective of its stakeholders”

Principles

1. Enough is enough

2. Deliver stakeholder value

3. It’s all behavior

Adapted from
[Chelimsky et al.:
The Rspec Book, 2010]

Unit Tests

Acceptance Tests

Vision

Goals

Epics

Use Case | Feature

User Stories | Scenarios

Scenario Steps

Test Cases

All Stakeholders, one statement

■ Example: Improve Supply Chain; Understand Customers Better

Core stakeholders have to define the vision

■ Incidental stakeholders help understand

□what is possible

□ at what cost

□with what likelihood

■How the vision will be achieved.

■ Examples

□ Easier ordering process

□ Better access to suppliers’ information

■Huge themes / feature sets are described as an “epic”

■ Too high level to start coding but useful for conversations

■ Examples

□ Reporting

□ Customer registration

■ Describe the behavior we will implement in software

■ Can be traced back to a stakeholder

■Warning: do not directly start at this level

■ Is it a waterfall process?

□ Yes: we think about goals to be achieved

□No: we just do enough

■ Explain the value/context of a feature to stakeholders  not too much
detail

■ Features deliver value to stakeholders

■ Stories are demonstrable functionality

■ Attributes (INVEST)

□ Independent

□Negotiable

□ Valuable (from a business Point of View)

□ Estimable

□ Small enough to be implemented in one iteration

□ Testable

■ 1 Feature  1..n User Stories

■ Stories should be vertical (e.g., no database-only stories)

■User stories are a token for conversations

■ Story content

□ Title

□Narrative

– Description, reason, benefit

– “As a <stakeholder>, I want <feature> so that <benefit>”

– “In order to <benefit>, a <stakeholder> wants to <feature>”

□ Acceptance criteria

■ 1 User Story  1..n scenarios

■ Each scenario describes one aspect of a User Story

■ Describe high-level behavior

■ 1 scenario  m scenario steps + step implementation

□Given – When – Then (Cucumber)

□ scenario “”; <steps>; end (RSpec)

■ 1 scenario step  0..i tests (e.g., in RSpec)

■ Describe low-level behavior

Behavior-driven development (BDD)

■ Story-based definition of application behavior

■ Definition of features (feature injection)

■ Driven by business value (outside-in)

Cucumber

■ Write test cases in a domain-specific language

■ Pro: Readable by non-technicians

■ Cons:

□ Translation to Ruby

□ directory structure

RSpec

■ Integration tests written in plain Ruby

■ Pro: No translation overhead

■ Con: Barely readable by domain experts

Scenario: Add a simple author

 Given I am on the authors page

 When I follow "Add author"

 And I fill in the example author

 And I press "Add"

 Then there should be the example author

 And I should be on the authors page

■Given – When – Then

■ Features are located in features/*.feature

■ Each line is a “step” that is implemented in Ruby (Capybara)

■ Steps are located in features/step_definitions/

■ Interpreted via regular expressions

http://github.com/jnicklas/capybara

http://github.com/jnicklas/capybara

feature “Author Management”

 scenario “should be possible to add an author and after clicking on

‘add’ it should appear on the next page, which shows the overview”

 visit authors_path

 click_on “add_author”

 fill_in :name, :with “Hemmingway”

 click_on “Add”

 page.should have_content(“Hemmingway”)

 end

end

■ Discussion 1: Which one is easier to understand ?
□ By programmers
□ By business stakeholders

■ Discussion 2: Which is easier to implement?

■ Discussion 3: Which one to choose?

□ In this project?
□ In other projects?

More opinions:
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-
testing.html
http://cukes.info

http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://cukes.info
http://cukes.info

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Test Data
■ Test Doubles
■ Setup and Teardown
■ Model Tests
■ View Tests
■ Controller Tests
■ Routing Tests
■ Outgoing Mail Tests
■ Helper Tests
■ Integration and Acceptance Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

■ Test::Unit comes with Ruby

■ RSpec has syntactical sugar in it

We’ll use RSpec http://teachmetocode.com/articles/rspec-vs-testunit/

http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/
http://teachmetocode.com/articles/rspec-vs-testunit/

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Test Data
■ Test Doubles
■ Setup and Teardown
■ Model Tests
■ View Tests
■ Controller Tests
■ Routing Tests
■ Outgoing Mail Tests
■ Helper Tests
■ Integration and Acceptance Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

■ Fixtures

□ Fixed state at the beginning of a test

□ Assertions can be made against this state

■ Factories

□ Blueprint for models

□Used to generate test data locally in the test

■ Fixtures are global

□Only ONE set of data

□ Every test has to deal with ALL test data

■ Fixtures are spread out

□Own directory

□One file per model  data for one test is spread out over many files

□ Tracing relationships is a pain

■ Fixtures are distant

□ A test fails

□ It is unclear which data is used

□How are values computed?

□ assert_equal(users(:ernie).age + users(:bert).age), 20)

■ Fixtures are brittle

□ Tests rely on this data

□ Tests break when data is changed

□ Data requirements may be incompatible

Test data should be

■ Local (defined as closely as possible to the test)

■ Compact (easy and quick to generate; even complex data sets)

■ Robust (independent to other tests)

 Data factories

■ Blueprint for sample instances

■ Rails tool support

□ Factory Girl (our choice)

□ Machinist

□ Fabrication

□ FixtureBuilder

□ ObjectDaddy

□ …

□ https://www.ruby-toolbox.com/categories/rails_fixture_replacement

■ Similar structure

□ Syntax for creating the factory blueprint

□ API for creating new objects

https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement
https://www.ruby-toolbox.com/categories/rails_fixture_replacement

■ Build strategies: build, create  standard, attributes_for, stub

■ after_build - called after a factory is built (via Factory.build)

■ after_create - called after a factory is saved (via Factory.create)

■ after_stub - called after a factory is stubbed (via Factory.stub)

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Test Data
■ Test Doubles

▬ Introduction

▬ Stubs in Detail

▬ Mocks in Detail

■ Setup and Teardown
■ Model Tests
■ View Tests
■ Controller Tests
■ …

3. Testing Tests
4. Outlook

Tests should be independent

New bug in a model  only tests related to this model should fail

How to achieve this?

■ Don’t share complex test data ✔

■ Don’t use complex objects

Steve Freeman, Nat Pryce: Growing Object-Oriented Software,
Guided by Tests

Fake objects used in place of “real” ones

Purpose: automated testing

Used when

■ real object is unavailable

■ real object is difficult to access or trigger

■ following a strategy to re-create an application state

■ limiting scope of the test to the object/method currently under
test

Usually: test system state AFTER a test

With test doubles: test system behavior!

Stub (passive)

■ Returns a predetermined value for a method call

■ Does not actually call the method

 thing.stubs(:name).returns(“Fred”)

Mock (more aggressive)

■ In addition: set an assertion

■ If expectation is not met  test failure

Makes sense?

Makes more sense?

Rspec-mocks (http://github.com/rspec/rspec-mocks)

Mocha (http://mocha.rubyforge.org/)

FlexMock (http://flexmock.rubyforge.org/)

https://www.ruby-toolbox.com/categories/mocking

http://github.com/rspec/rspec-mocks
http://github.com/rspec/rspec-mocks
http://github.com/rspec/rspec-mocks
http://mocha.rubyforge.org/
http://flexmock.rubyforge.org/
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking
https://www.ruby-toolbox.com/categories/mocking

■ Why Behavior-driven Design (BDD)?
■ Building Blocks of Tests and BDD

□ Test Data
□ Test Doubles

– Introduction
– Stubs in Detail
– Mocks in Detail

□ Setup and Teardown
□ Model Tests
□ View Tests
□ Controller Tests
□ …

■ Testing Tests
■ Outlook

Replacement for one or many parts of an object

Normal method call is not happening

Returns a predefined value if called

You can only call stubby.name or stubby.weight

Else: error

Or: stub_everything(...)  nil

A specific instance is returned

Database is not touched

“find” cannot be verified anymore BUT

Tests based on “find” can be isolated

 just test the logic that is under test

■ No guarantee that find returns the exact object you expect

■ any_instance is valid only for instances created after you declared the stub (not for

fixture data)

■No guarantee that find returns the exact object you expect

■ any_instance is valid only for instances created after you declared the
stub (not for fixture data)

Unexpected invocation

http://mocha.rubyforge.org/

http://mocha.rubyforge.org/

■ Why Behavior-driven Design (BDD)?
■ Building Blocks of Tests and BDD

□ Test Data
□ Test Doubles

– Introduction
– Stubs in Detail
– Mocks in Detail

□ Setup and Teardown
□ Model Tests
□ View Tests
□ Controller Tests
□ …

■ Testing Tests
■ Outlook

■Mock = Stub + attitude

■ Demands that mock parameters are called (default: once)

■Or as often as desired

■ Example of a controller test

vs.

■ Disadvantages

□ Mismatch between mocked model and real model

– Data type

– Semantic

– integration tests

□ Risk to test predefined data (non-sense)

□ Tests might depend on internal structures of mocked object
 brittle while refactoring

■ Advantages

□ The test is focused on behavior

□ Speed

□ Isolation of tests (failure in model does not affect controller test)

■ You replace an object because it is hard to create in a test environment
 use a stub

■minimize number of mocked methods

■ #mocks

□ possibility to run out of sync with real implementation

□ test too large? Poor object-oriented design?

■ Don’t assert a value you set by a test double (false positives)

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□ Test Data

□ Test Doubles

□ Setup and Teardown

□Model Tests

□ View Tests

□ Controller Tests

□…

■ Testing Tests

■Outlook

■ https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-
hooks

https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks
https://www.relishapp.com/rspec/rspec-core/v/2-0/docs/hooks/before-and-after-hooks

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■ A Rails model

□ accesses data through an ORM

□ implements business logic

□ is “fat”

■Model tests

□Model tests in Rails = Test Framwork + test data + setup/teardown +
test logic + additional assertions

□ Easiest tests to write

■ Tests should cover ~100% of the model code

■ Do not test framework functionality like “belongs_to”

■ Test your validations

■How many tests? Let tests drive the code  perfect fit

■What comes out?

□One test for the “happy-path case”

□One test for each branch

□ Corner cases (nil, wrong values, …)  if appropriate

■ Keep each test small!

■ If 1 call to a model  many changes:

□ #Assertions   clarity and cohesion 

□ #Assertions   test independece

 Use context & describe and have 1 assertion per test



■ Automate testing with Autotest
(https://github.com/rspec/rspec/wiki/autotest)

■ Run by using: autotest –rails

■Use FSEvent to determine file changes

■ Automatically determines which tests to run again (remember:
Convention over Configuration)

■ Can be integrated with Growl on Macs 

https://github.com/rspec/rspec/wiki/autotest

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■ A Rails view

□Has only minimal logic

□ Does never call the database!

□ Presents the data given by the controller

■ Challenges for view tests

□ Time-intensive

□How to test look & feel?

□ Brittle w.r.t. re-designs

■ Specify and verify logical and semantic structure

■ Goals
□ Validate that view layer runs without error
□ Check that data gathered by the controller is presented as expected

– message when passing empty collections
– pagination upon more than x elements
– …

□ Validate security-based output (e.g., for admins)

■ Do not
□ Validate HTML markup
□ Evaluate look & feel
□ Test actual text

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■ A Rails controller
□ Is “skinny”
□ Calls the ORM
□ Calls the model
□ Passes data to the view

■ Goal of controller tests

□ Simulate a request
□ Verify the result

■ Subclass of ActionController::TestCase

(http://api.rubyonrails.org/classes/ActionController/TestCase.html)
■ and ActiveSupport:TestCase

(http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html)

http://api.rubyonrails.org/classes/ActionController/TestCase.html
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html

■ 3 important variables

□ controller

□ request

□ response

■ Variables for

□ session – session[:key]

□ controller variables – assigns[:key]

□ flash – flash[:key]

■ Methods for

□ get

□ post

□ put

□ delete

□ xhr (Ajax)

■ Remember: Model functionality is tested in model tests!

■ Controller tests

□ Verify that user requests trigger

– Model/ORM calls

– that data is forwarded to view

□Handling of invalid user requests

□Handling of exceptions potentially raised by model calls

□ Verifying security roles / role-based access control

■ Controller method is called directly

■ Routes are NOT evaluated

■ Real request parameters are always strings

■ By default, views are not rendered

■HTTP status code

■ Correct template

■ Assertion methods

□ response.should redirect_to(…)

□ response.should be_success | be_redirect | …

□ response.should render_template(…)

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■ route_for

■ params_from

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■What to validate?

□ Application sends mail when expected

□ Email content is what you expect

■ Enable testing

□ Specs for content will be generated along with “rails g mailer”

□ For convenience matchers use email-spec gem
https://github.com/bmabey/email-spec

https://github.com/bmabey/email-spec
https://github.com/bmabey/email-spec
https://github.com/bmabey/email-spec

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■Helpers are filled with “the rest”

■Used as mediator between views and models or
views and controllers

■ (Complex) view logic is moved to helpers

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

□…

□Model Tests

□ View Tests

□ Controller Tests

□ Routing Tests

□Outgoing Mail Tests

□Helper Tests

□ Integration and Acceptance Tests

■ Testing Tests & Hints for Successful Test Design

■Outlook

■Written by developers for developers

■ Test communication of controllers via sessions/cookies

■ Verify end-to-end behavior

■Make controller calls

■ Verify that expected application states are created

■ Similar to controller tests, BUT

□Not tied to one controller

□ 1..n sessions for different users

■ DSLs for
□ “Browsing the Internet”
□ Acceptance testing

■ 10 Useful Methods
□ attach_file(field_locator, path, content_type = nil)
□ check(field_locator)
□ choose(field_locator)
□ click_button(value)
□ click_link(text_or_title_or_id, options = {})
□ fill_in(field_locator, options = {})
□ save_and_open_page()
□ select(option_text, options = {})
□ uncheck(field_locator)
□ visit(url = nil, http_method = :get, data = {})

■ Choses different capybara driver

(e.g., selenium or phantomJS)

■ Waiting period for Ajax Calls can be

customised

■ Behavior-Driven Development of MasterMind

■Why Behavior-driven Design (BDD)?

■ Building Blocks of Tests and BDD

■ Testing Tests & Hints for Successful Test Design

■Outlook

■ Test coverage

■ Fault seeding

■Mutation testing

■Most commonly used metric for evaluating test suite quality

■ Test coverage = executed code during test suite run / all code *100

■ 85 loc / 100 loc = 85% test coverage

1. Absence of line coverage indicates a potential problem

2. Existence of line coverage means very little

3. In combination with good testing practices, coverage might say
something about test suite reach

4. ~100% test coverage is a by product of BDD

■Most useful approaches

□ Line coverage

□ Branch coverage

■ Tool

□ SimpleCov (https://github.com/colszowka/simplecov) - Ruby 1.9+

□ Rcov (https://github.com/relevance/rcov) for 1.8

□Uses line coverage

□ 100% code coverage although 1 branch wasn’t executed

https://github.com/colszowka/simplecov
https://github.com/colszowka/simplecov
https://github.com/relevance/rcov

■ Independence

□ of external test data

□ of other tests (or test order)

■ Repeatability

□ Same results each test run

□ Potential Problems

– date (Timecop)

– random numbers (try to avoid them or stub the generation)

■ Clarity

□ Test purpose should be immediately understandable

□ Readability

□How does the test fit into the larger test suite?

□Worst case:

■ Clarity

□…

□ Better:

□ “Debugging is harder than coding”

□ Tests should be simple

■ Conciseness

□Use the minimum amount of code and objects

□ Clear beats concise

□Writing the minimum amount of tests

□ tests will be faster

■ Robustness

□ Tests the logic as intended

□ Code is correct  tests passes

□ Code is wrong  test does not pass

□ Example: view testing

vs.

■ Robustness

□ But be aware of false positives

Reproduce the error

What has changed?

Isolate the failure

■ thing.inspect (p thing)

■ Add assertions/prints to your test

■ Rails.logger.error

■ save_and_open_page

Explain to someone else

Introduce a fault into your program

Run tests

Minimum 1 test should fail

Warning: do not leave the fault in the software!

Mutant: Slightly modified version of the program under test, differing
from it by a small, syntactic change

Test
Cases

Program

Mutants

should pass on

should fail on

To create mutants, replace:
if  if not
12  13
=  <

■ Ruby tool: Heckle (http://ruby.sadi.st/Heckle.html)

1. Your tests should pass

2. You run Heckle to change your code

3. Test(s) should fail

4. Write tests for surviving mutants if useful

http://ruby.sadi.st/Heckle.html

■ Retrospective Sprint #1

■ Code Review Techniques

■ Scrum Tips & Tricks

Outlook (Nov 22, 1st slot)

