
Application Deployment

Softwaretechnik II 2014/15
Thomas Kowark

SWT2 | Application Deployment | WS 2014/15

Outline

■  Options for Application Hosting
■  Automating Environment Setup

■  Deployment Scripting
■  Application Monitoring
■  Continuous Deployment and Scrum

SWT2 | Application Deployment | WS 2014/15

Hosting Options

■  Choice of hosting options is driven by a variety of parameters
□  Initial setup effort, cost, and required expertise

□  Operational costs and effort
□  Targeted service level agreements (SLAs)
□  Legal considerations (data privacy, liability, etc.)

Low Effort
Little Control

High Effort
High Control

Your own
datacenter PaaS IaaS Dedicated

Hosting

Platform as a Service (Paas)

■  Providers deliver Operating System, Execution environment,
Database, Web Server, Monitoring, etc.

■  Advantages
□  Minimal effort and knowledge required for setup (see Heroku

Doku, for example)
□  Possibility to scale-up easily

■  Disadvantages
□  Usually fixed environment with little variation points
□  Provider SLA targets might differ from yours (Downtime,

Response Times, etc.)
□  Limited Technical support

■  Examples: Heroku, Force.com, Azure Compute, Google App
Engine, (EngineYard)

SWT2 | Application Deployment | WS 2014/15

Infrastructure as a Service

■  Providers deliver virtual private servers with requested
configuration

■  Setup of execution environment, database servers, etc. is up to
customers

■  Advantages
□  Flexibility w.r.t. execution environment

□  Control over VM parameters
■  Disadvantages

□  Administration know-how and efforts required
□  It’s still a VM: Potential performance drops, Disk I/O, etc.

■  Examples: Amazon EC2, Google Compute Engine, Rackspace
Cloud, (EngineYard)

SWT2 | Application Deployment | WS 2014/15

Dedicated Hosting

■  Providers allocate dedicated hardware
■  Setup similar to IaaS

■  Advantages
□  No virtualization-related performance issues
□  More control over network configuration (e.g. racking

machines up as needed)
□  Dedicated SLAs

■  Disadvantages

□  High upfront cost
□  Administration efforts

■  Examples: Hetzner, GoDaddy, Rackspace, Host Europe

SWT2 | Application Deployment | WS 2014/15

Setting up the Production Environment

Scenario: Mixture of IaaS and Dedicated Hosting
■  For Heroku Deployment, please refer to the Heroku documentation

■  Own infrastructure is out of scope

Step 1: Preparing the infrastructure
■  Main Challenges:

□  How to minimize the efforts required to repeatedly setup
identical execution environments for your application?

□  Without relying on “administration gurus”?
■  Solutions:

□  DevOps, i.e., a strong collaboration between the development
and the operations team

□  A strong bias towards automations
SWT2 | Application Deployment | WS 2014/15

Where to start?

■  Dedicated Servers and VPS not always feasible for initial
experiments

■  Possible solution: Virtual Box + Vagrant

Vagrant (http://www.vagrantup.com)
■  DSL for describing the basic parameters of a virtual machine
■  Allows for simple recovery in case of VM errors
■  Predefined and custom packaged boxes

■  Possibility to create a multi-server setup
■  Advantages:

□  File size reduced in compared to sharing suspended VMs
□  Same packages loaded with custom VM configurations

SWT2 | Application Deployment | WS 2014/15

Vagrant in a nutshell

■  vagrant init lucid64 && vagrant up
■  vagrant ssh + your desired changes

■  vagrant package
■  vagrant box add your_new_base_box_name package.box

■  Sample Vagrant File:

SWT2 | Application Deployment | WS 2014/15

2.5 Conclusion

In this chapter, we covered the following:

• Installing VirtualBox in order to create virtual machines
• Setting up Vagrant to automate the process of creating and managing

VMs with VirtualBox
• Creating a customized Vagrant base box to make new box setup faster
• Examining a few of the features that Vagrant offers for configuring VMs

In the next chapter, we’ll introduce Puppet, a system administration tool that
will help us configure the virtual machines that we can now build quickly
and safely. We’ll learn the syntax of Puppet’s DSL and get our Rails stack up
and running along the way.

2.6 For Future Reference

Creating a VM
To create a new VM using Vagrant, simply run the following commands:

$ mkdir newdir && cd newdir
$ vagrant init lucid64 && vagrant up

Creating a Custom Base Box
To cut down on initial box setup, create a customized base box.

$ mkdir newdir && cd newdir $ vagrant init lucid64 && vagrant up
Now 'vagrant ssh' and make your changes, then log out of the VM
$ vagrant package
$ vagrant box add your_new_base_box_name package.box

A Complete Vagrantfile
Here’s a Vagrantfile that uses a custom base box, shares a folder, forwards an
additional port, and uses a private host-only network:

vagrant/with_options/Vagrantfile
Vagrant::Config.run do |config|

config.vm.customize ["modifyvm", :id, "--name", "app", "--memory", "512"]
config.vm.box = "lucid64_with_ruby193"
config.vm.host_name = "app"
config.vm.forward_port 22, 2222, :auto => true
config.vm.forward_port 80, 4567
config.vm.network :hostonly, "33.33.13.37"
config.vm.share_folder "hosttmp", "/hosttmp", "/tmp"

end

report erratum • discuss

Conclusion • 25

Prepared exclusively for Jürgen Müller

Next Step: Automate VM Configuration

■  VM is up and running -> How to configure it automatically?
■  Why not manually?

□  Error prone, repetitive tasks
□  Documentation has to be kept up-to-date
□  Explicit knowledge transfer required if Admin changes

■  One sample solution: Puppet (http://puppetlabs.com)
□  Formalize server configuration into manifests

□  Ensure that files, packages, and services are in the prescribed
state

□  Requires administration knowledge, i.e., services that are not
specified will not start automagically

■  Alternative: Chef (http://wiki.opscode.com/display/chef/Home)

SWT2 | Application Deployment | WS 2014/15

Example: Install, Configure, and run
Apache2 with Puppet

3.11 For Future Reference

Puppet Organization
Puppet repositories are organized by creating a collection of modules. Each
module can be included in a node with an include directive, such as include
apache2. Each module contains at least one manifest in the manifests and,
optionally, some files in the files directory. Manifests contain class declarations,
which contain resource declarations that are composed of types and parame-
ters.

Running Puppet
You can apply Puppet manifest to a system using the following:

$ sudo puppet apply --verbose manifests/site.pp

Or, to do a test run with more output, use --noop with --verbose.

$ sudo puppet apply --noop --verbose manifests/site.pp

Sample Apache Manifest
Here’s a sample Apache manifest that ensures Apache is installed, has a
custom configuration file in place, and starts on boot:

puppetrails/apache_package_file_service/modules/apache2/manifests/init.pp
class apache2 {

package {
"apache2":

ensure => present,
before => File["/etc/apache2/apache2.conf"]

}

file {
"/etc/apache2/apache2.conf":

owner => root,
group => root,
mode => 644,
source => "puppet:///modules/apache2/apache2.conf"

}

service {
"apache2":

ensure => true,
enable => true,
subscribe => File["/etc/apache2/apache2.conf"]

}
}

report erratum • discuss

For Future Reference • 59

Prepared exclusively for Jürgen Müller

3.11 For Future Reference

Puppet Organization
Puppet repositories are organized by creating a collection of modules. Each
module can be included in a node with an include directive, such as include
apache2. Each module contains at least one manifest in the manifests and,
optionally, some files in the files directory. Manifests contain class declarations,
which contain resource declarations that are composed of types and parame-
ters.

Running Puppet
You can apply Puppet manifest to a system using the following:

$ sudo puppet apply --verbose manifests/site.pp

Or, to do a test run with more output, use --noop with --verbose.

$ sudo puppet apply --noop --verbose manifests/site.pp

Sample Apache Manifest
Here’s a sample Apache manifest that ensures Apache is installed, has a
custom configuration file in place, and starts on boot:

puppetrails/apache_package_file_service/modules/apache2/manifests/init.pp
class apache2 {

package {
"apache2":

ensure => present,
before => File["/etc/apache2/apache2.conf"]

}

file {
"/etc/apache2/apache2.conf":

owner => root,
group => root,
mode => 644,
source => "puppet:///modules/apache2/apache2.conf"

}

service {
"apache2":

ensure => true,
enable => true,
subscribe => File["/etc/apache2/apache2.conf"]

}
}

report erratum • discuss

For Future Reference • 59

Prepared exclusively for Jürgen Müller

SWT2 | Application Deployment | WS 2014/15

Tying the pieces together

■  Describe your virtual machine with Vagrant
■  With Puppet, you can

□  Define the required packages for all required servers
□  Install and configure necessary services
□  Create the directory structure for your application
□  Create configuration files (e.g., database.yml)

■  Not touched here but also possible

□  Use templates to create different files based on variables
□  Control flow features (if-else and switch)
□  Environments (staging vs. production)
□  PuppetMaster (Central management of manifests that are

automatically transferred to connected PuppetClients)
□  PuppetDashboard

SWT2 | Application Deployment | WS 2014/15

Environment is set – How to deploy?

■  Necessary steps:
□  Checkout code changes

□  Update your bundle
□  Database migrations
□  Restart application servers
□  Optional: Restart index servers, setup new Cron Jobs, etc.

■  Remember: Automation!
□  Simple version: see .travis.yml
□  Capistrano (https://github.com/capistrano/capistrano)
◊  Prepares the server for deployment

◊  Deploy the application as updates are made

SWT2 | Application Deployment | WS 2014/15

since we’ve also set copy_strategy to export, removing the .git directory. Removing
the .git directory makes the deploy payload smaller and, more importantly,
prevents our entire Git repository from being accessible to someone who hacks
into our server. The copy strategy then compresses the source code and copies
the compressed file to the VM where it is uncompressed into the deployment
target directory. This is a convenient way to put the code onto the VM since
the code export is done locally; we don’t need to depend on the VM being able
to connect to the remote Git repository or even having Git installed.

capistrano/config/deploy.rb
set :deploy_via, :copy
set :copy_strategy, :export

So far, we’ve seen Capistrano variable settings; now it’s time to add some
tasks. When we deploy new code to the VM, we need to tell Passenger to load
our new code into new application instances. We’ll do this with a few task
declarations.

This series of tasks starts with a namespace() declaration. This allows us to
group the Passenger-related tasks logically, and it lets us declare other start
and stop tasks to manage other services without those declarations clashing
with the Passenger task names. The stop and start tasks are empty since Pas-
senger will serve up MassiveApp as soon as the code is in place, but the restart
task contains a single command that signals Passenger to restart MassiveApp
so our new code will be loaded. And we need a task to copy our database.yml
file into place, so we’ll put that here as well as a before directive that will force
that task to be called as part of a deployment.

capistrano/config/deploy.rb
namespace :deploy do

task :start do ; end
task :stop do ; end
desc "Restart the application"
task :restart, :roles => :app, :except => { :no_release => true } do

run "#{try_sudo} touch #{File.join(current_path,'tmp','restart.txt')}"
end
desc "Copy the database.yml file into the latest release"
task :copy_in_database_yml do

run "cp #{shared_path}/config/database.yml #{latest_release}/config/"
end

end
before "deploy:assets:precompile", "deploy:copy_in_database_yml"

We’ll look at more tasks later, but that wraps up our initial tour of a minimal
config/deploy.rb. Now we’ll actually use it!

report erratum • discuss

Making It Work • 67

Prepared exclusively for Jürgen Müller

Capistrano

■  Capistrano executes tasks in a Unix shell via ssh
■  Once again: DSL to describe what needs to be done

■  Setup: $ cap install

SWT2 | Application Deployment | WS 2014/15

Workflow with Vagrant, Puppet, and
Capistrano

■  Create the Virtual Machine from the predefined box
□  -> correct operating system, Ruby installed, Puppet installed

■  Apply the puppet manifests
□  -> all required packages loaded, services running, directory

structure for the app created (e.g. /var/my_app/)
■  Run cap deploy:setup

□  Directory structure for deployment
◊  /releases

◊  /shared
●  /log
●  /system
●  /pids

 SWT2 | Application Deployment | WS 2014/15

Deploying with Capistrano

■  $ cap deploy(:cold)

SWT2 | Application Deployment | WS 2014/15

deploy:cold

deploy:update deploy:migrate deploy:start

deploy:update_code deploy:symlink

deploy:finalize_update

Figure 2—The deploy:code task flow

Deploying with Capistrano produces a torrent of output, but it’s worth reading
through it at least once to get familiar with what Capistrano is doing. We get
things rolling by invoking the task.

$ cap deploy:cold
«lots of output»
First, deploy:cold runs a dependent task called deploy:update, which in turn runs
deploy:update_code. This task exports MassiveApp’s code from our Git repository
by cloning the repository and deleting the .git directory.

capistrano/deploy_cold_output.txt
* executing `deploy:cold'
* executing `deploy:update'

** transaction: start
* executing `deploy:update_code'

executing locally:
"git ls-remote
git://github.com/deployingrails/massiveapp.git HEAD"
command finished in 388ms

* getting (via export) revision
1d45e7a7609386da0b56cbd9299eb6e1ea73edee
to /var/folders/dE/dEW2lQWVGMeQ5tBgIlc5l++++TU/-Tmp-/20120322202531
executing locally:
git clone -q git://github.com/deployingrails/massiveapp.git
/var/folders/dE/dEW2lQWVGMeQ5tBgIlc5l++++TU/-Tmp-/20120322202531
&& cd /var/folders/dE/dEW2lQWVGMeQ5tBgIlc5l++++TU/-Tmp-/20120322202531
&& git checkout -q -b deploy 1d45e7a7609386da0b56cbd9299eb6e1ea73edee

70 • Chapter 4. Basic Capistrano

report erratum • discussPrepared exclusively for Jürgen Müller

Extended Capistrano Features (1/2)

■  Hooks
■  File Up/Download (e.g., retrieve log files)

■  Multistage deployment

□  Larger projects might have multiple environments, e.g., for
quality assurance, performance testing, etc.

□  By setting multiple stages, we can reuse general commands
and only alter what’s needed in particular environments

SWT2 | Application Deployment | WS 2014/15

capistrano2/get.rb
desc "Download the production log file"
task :get_log do

get "#{current_path}/log/production.log", \
"#{Time.now.strftime("%Y%m%d%H%M")}.production.log"

end

We can also fetch an entire directory tree with the recursive option.

capistrano2/get_recursive.rb
desc "Download the entire log directory"
task :get_log_directory do

get "#{current_path}/log/", "tmp/", :recursive => true
end

get will connect to only one server, but for connecting to multiple servers, we
can use download. However, if we download files with the same name from
multiple servers, they’ll just overwrite each other. Fortunately, Capistrano
supports a simple macro; it replaces $CAPISTRANO:HOST$ with the name of the
host to which Capistrano is connecting. So, we can write our download task
with this macro in the destination filename, and we’ll get a series of files all
prefixed with the appropriate host name.

capistrano2/download.rb
desc "Download the production log file"
task :download_log do

download "#{current_path}/log/production.log",\
"$CAPISTRANO:HOST$.production.log"

end

Capistrano also gives us an upload command for transferring files to remote
servers. The $CAPISTRANO:HOST$ string works with upload, so we can give each
server a specific maintenance page by placing a few files in a local directory.

$ ls tmp/maintenance_pages/
maintenance.html.server1.com maintenance.html.server2.com
maintenance.html.server3.com

Then we’ll reference that file in a task that uses upload, and each server will
receive the appropriate file.

capistrano2/upload.rb
desc "Upload the host-specific maintenance pages to each server"
task :upload_maintenance_page do

upload "tmp/maintenance.html.$CAPISTRANO:HOST$", "#{deploy_to}/maintenance.html"
end

Sometimes we need to upload not a file but instead just the contents of a
string. In those cases, we can use the put() method. To demonstrate this, let’s

84 • Chapter 5. Advanced Capistrano

report erratum • discussPrepared exclusively for Jürgen Müller

5.4 Deploying to Multiple Environments with Multistage

For a small project, we usually have to deploy to only one environment,
namely, production. For larger projects, though, we’ll have a quality assurance
environment, and sometimes we’ll have a performance testing environment
and maybe a sales demonstration environment, and, generally, we’ll be
deploying to multiple environments.

We like to solve this problem with a technique called Capistrano multistage.
Multistage lets us specify a different Capistrano configuration for each envi-
ronment we’re deploying to while continuing to share the common settings
in config/deploy.rb.

Older versions of Capistrano required that capistrano-ext be installed via a sep-
arate gem, but multistage was built into Capistrano as of version 2.10.0.
Since we’re using a newer version than that, we’ll jump right into configuring
multistage by modifying config/deploy.rb. Let’s set two variables and require mul-
tistage’s code. The first variable, stages, is an Array of all the environments that
we’ll be deploying to. The second variable, default_stage, is the stage that
Capistrano will deploy to if we run cap deploy without specifying a stage. Lastly,
we require the multistage extension. Here’s how that looks at the top of
config/deploy.rb with two stages, beta and production:

set :stages, %w(beta production)
set :default_stage, "beta"
require 'capistrano/ext/multistage'

We’ve told Capistrano that we have several stages, so now we need to define
them. Let’s create a new directory to hold our stage configuration; multistage
will look for these in config/deploy/ by default, so we’ll create that directory.2

$ mkdir config/deploy/

Now we can add a new file to that directory with the custom settings for our
beta environment. In this case, the only thing different about beta is that it’s
on a different server, so let’s put that setting into config/deploy/beta.rb.

server "beta.mydomain.com", :web, :app, :db, :primary => true

And we’ll set the same variable in our production stage configuration,
config/deploy/production.rb.

server "mydomain.com", :web, :app, :db, :primary => true

2. We could use a different directory with set :stage_dir, "some_directory".

report erratum • discuss

Deploying to Multiple Environments with Multistage • 87

Prepared exclusively for Jürgen Müller

Extended Capistrano Features (2/2)

■  Capture output from remote servers (e.g., free -m | grep Mem)
■  Capture streams from remote servers (e.g., tail on production.log)

■  Using $ cap shell to run commands simultaneously on multiple
servers (e.g., df -h)

SWT2 | Application Deployment | WS 2014/15

Should we really do these manually?

Monitoring your servers and application

■  Keep an eye on server health and applications:
□  Get alerts when infrastructure components fail or exceed

predefined thresholds
□  Examples:

◊  Nagios (http://nagios.org)
◊  newrelic (http://newrelic.com)

■  Monitor application errors and performance bottlenecks

□  Breakdowns for long-running requests
□  Notifications upon application errors
□  Good idea: Protocols for error fixing!
□  Examples: airbrake (http://airbrake.io, open-source, self-

hosted alternative: https://github.com/errbit/errbit), newrelic
SWT2 | Application Deployment | WS 2014/15

Deploying 50 times a day?
Continuous Deployment

■  Advantages:
□  Users get a sense of “soemthing happening” frequently

□  Features are available on the spot
□  Error isolation -> reduced downtime for error detection

■  Prerequisites/Disadvantages
□  Only feasible with extensive set of GOOD tests (see Chapter 3)

□  Testing needs to be fast and continuous
□  Deployment effort should be minimal (Capistrano, anybody?)

and take reasonable amounts of time
□  Not feasible for applications with high availability requirements

SWT2 | Application Deployment | WS 2014/15

Continuous Deployment vs. Scrum

■  How do 50 deployments a day fit into Scrums notion of Sprints?
■  Some ideas (let’s discuss):

□  Intermediate Reviews for individual features by the PO
□  Deploying to staging or testing systems becomes part of the

definition of done
□  Acceptance of features not only based on PO approval but user

approval?
□  …

SWT2 | Application Deployment | WS 2014/15

