Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Application Deployment

Softwaretechnik II 2014/15
Thomas Kowark



ﬂ Hasso
) Plattner
Out“ne Institut

m Options for Application Hosting

m Automating Environment Setup

m Deployment Scripting

m Application Monitoring

m Continuous Deployment and Scrum

SWT2 | Application Deployment | WS 2014/15



ﬂ II;IIasso
Hosting Options Institut

m Choice of hosting options is driven by a variety of parameters
o Initial setup effort, cost, and required expertise
o Operational costs and effort
o Targeted service level agreements (SLAs)
o Legal considerations (data privacy, liability, etc.)

Low Effort High Effort
Little Control High Control

Dedicated Your own

SWT2 | Application Deployment | WS 2014/15




. attner
Platform as a Service (Paas) Institut

m Providers deliver Operating System, Execution environment,
Database, Web Server, Monitoring, etc.

m Advantages

o Minimal effort and knowledge required for setup (see Heroku
Doku, for example)

0 Possibility to scale-up easily
m Disadvantages
o Usually fixed environment with little variation points

o Provider SLA targets might differ from yours (Downtime,
Response Times, etc.)

o Limited Technical support

m Examples: Heroku, Force.com, Azure Compute, Google App
Engine, (EngineYard)



Hasso
. Plattner
Infrastructure as a Service H Institut

m Providers deliver virtual private servers with requested
configuration

m Setup of execution environment, database servers, etc. is up to
customers

m Advantages
o Flexibility w.r.t. execution environment
o Control over VM parameters
m Disadvantages
o Administration know-how and efforts required
o It's still a VM: Potential performance drops, Disk I/0, etc.

m Examples: Amazon EC2, Google Compute Engine, Rackspace
Cloud, (EngineYard)



. . P e
Dedicated Hosting Institut

m Providers allocate dedicated hardware
m Setup similar to IaaS
m Advantages
0 No virtualization-related performance issues

o More control over network configuration (e.g. racking
machines up as needed)

o Dedicated SLAs
m Disadvantages
o High upfront cost
o Administration efforts
m Examples: Hetzner, GoDaddy, Rackspace, Host Europe



P P
- . . attner
Setting up the Production Environment Institut

Scenario: Mixture of IaaS and Dedicated Hosting

m For Heroku Deployment, please refer to the Heroku documentation

m Own infrastructure is out of scope

Step 1: Preparing the infrastructure

m Main Challenges:

0 How to minimize the efforts required to repeatedly setup
identical execution environments for your application?

o Without relying on “administration gurus”?
m Solutions:

o DevOps, i.e., a strong collaboration between the development
and the operations team

o A strong bias towards automations



atther
Where to start? Institut

m Dedicated Servers and VPS not always feasible for initial
experiments

m Possible solution: Virtual Box + Vagrant

Vagrant (http://www.vagrantup.com)

m DSL for describing the basic parameters of a virtual machine
m Allows for simple recovery in case of VM errors
m Predefined and custom packaged boxes
m Possibility to create a multi-server setup
m Advantages:
o File size reduced in compared to sharing suspended VMs
0 Same packages loaded with custom VM configurations



Vagrant in a nutshell

vagrant init lucid64 && vagrant up
vagrant ssh + your desired changes

vagrant package

Hasso
Plattner
Institut

vagrant box add your_new_base_box_name package.box

Sample Vagrant File:

Vagrant::Config.run do |config]|

config.vm.customize ["modifyvm", :id, "--name", "app",
config.vm.box = "lucid64 with rubyl93"
config.vm.host name = "app"

config.vm.forward port 22, 2222, :auto => true

config.vm.forward port 80, 4567

config.vm.network :hostonly, "33.33.13.37"

config.vm.share folder "hosttmp", "/hosttmp", "/tmp"
end

"--memory",

II512II]




P e
Next Step: Automate VM Configuration Institut

m VM is up and running -> How to configure it automatically?
= Why not manually?

o Error prone, repetitive tasks

0 Documentation has to be kept up-to-date

o Explicit knowledge transfer required if Admin changes
m One sample solution: Puppet (http://puppetlabs.com)

o Formalize server configuration into manifests

o Ensure that files, packages, and services are in the prescribed
state

0 Requires administration knowledge, i.e., services that are not
specified will not start automagically

m Alternative: Chef (http://wiki.opscode.com/display/chef/Home)

SWT2 | Application Deployment | WS 2014/15



Example: Install, Configure, and run
Apache2 with Puppet

puppetrails/apache_package_file_service/modules/apache2/manifests/init.pp
class apache2 {
package {
"apache2":
ensure => present,
before => File["/etc/apache2/apache2.conf"]

}
file {
"/etc/apache2/apache2.conf":
owner => root,
group => root,
mode => 644,
source => "puppet:///modules/apache2/apache2.conf"
}
service {
"apache2":
ensure => true,
enable => true,
subscribe => File["/etc/apache2/apache2.conf"]
}
}

sw sude.nuppet, apply, < verbose manifests/site.pp

Hasso
Plattner
Institut



P R
Tying the pieces together Institut

m Describe your virtual machine with Vagrant

m With Puppet, you can

O

O

O

O

Define the required packages for all required servers
Install and configure necessary services

Create the directory structure for your application
Create configuration files (e.g., database.yml)

m Not touched here but also possible

O

O

O

Use templates to create different files based on variables
Control flow features (if-else and switch)
Environments (staging vs. production)

PuppetMaster (Central management of manifests that are
automatically transferred to connected PuppetClients)

PuppetDashboard



- . attner
Environment is set — How to deploy? Institut

m Necessary steps:
o Checkout code changes
o Update your bundle
o Database migrations
0 Restart application servers
o Optional: Restart index servers, setup new Cron Jobs, etc.

m Remember: Automation!
o Simple version: see .travis.yml
o Capistrano (https://github.com/capistrano/capistrano)
¢ Prepares the server for deployment

¢ Deploy the application as updates are made

SWT2 | Application Deployment | WS 2014/15



Capistrano

m Capistrano executes tasks in a Unix shell via ssh

m Once again: DSL to describe what needs to be done

m Setup: $ cap install

capistrano/config/deploy.rb
namespace :deploy do

task

:start do

: end

task :stop do ; end

desc "Restart the application"

task

:restart,

:roles =>

app,

rexcept => { :no release => true }

Hasso
Plattner
Institut

do

run "#{try sudo} touch #{File.join(current path, 'tmp', 'restart.txt"')}"

end

desc "Copy the database.yml file into the latest release"
task :copy in database yml do

run "cp #{shared path}/config/database.yml #{latest_release}/config/1

end
end

before "deploy:assets:precompile", "deploy:copy in database yml'

SWT2 | Application Deployment | WS 2014/15



Workflow with Vagrant, Puppet, and ﬂ Hasso
Capistrano

Institut

m Create the Virtual Machine from the predefined box
0 -> correct operating system, Ruby installed, Puppet installed
m Apply the puppet manifests

o -> all required packages loaded, services running, directory
structure for the app created (e.g. /var/my_app/)

m Run cap deploy:setup
0 Directory structure for deployment
¢ [releases

¢ /shared

e /log
e /system
e /pids

SWT2 | Application Deployment | WS 2014/15



Deploying with Capistrano

m $ cap deploy(:cold)

deploy:cold

'

deploy:update

deploy:migrate

Hasso
Plattner
Institut

deploy:start

AN

deploy:update_code

deploy:symlink

l

deploy:finalize_update

SWT2 | Application Deployment | WS 2014/15



Hasso
Extended Capistrano Features (1/2) " b

m Hooks
m File Up/Download (e.g., retrieve log files)

capistrano2/download.rb
desc "Download the production log file"
task :download log do
download "#{current path}/log/production. log",\
"$CAPISTRANO:HOSTS$.production. log"

end

m Multistage deployment

o Larger projects might have multiple environments, e.g., for
quality assurance, performance testing, etc.

o By setting multiple stages, we can reuse general commands

and only alter what’s needed in particular environments
set :stages, %w(beta production)

set :default stage, "beta"

require 'capistrano/ext/multistage'’

SWT2 | Application Deployment | WS 2014/15



Hasso
Extended Capistrano Features (2/2) " b

m Capture output from remote servers (e.g., free -m | grep Mem)
m Capture streams from remote servers (e.g., tail on production.log)

m Using $ cap shell to run commands simultaneously on multiple
servers (e.g., df -h)

Should we really do these manually?

SWT2 | Application Deployment | WS 2014/15



Hasso
. . . . Plattner
Monitoring your servers and application ﬂ Institut

m Keep an eye on server health and applications:

o Get alerts when infrastructure components fail or exceed
predefined thresholds

0 Examples:
¢ Nagios (http://nagios.orq)

¢ newrelic (http://newrelic.com)

m Monitor application errors and performance bottlenecks
o Breakdowns for long-running requests
o Notifications upon application errors
0 Good idea: Protocols for error fixing!

o Examples: airbrake (http://airbrake.io, open-source, self-
hosted alternative: https://qgithub.com/errbit/errbit), newrelic
SWT2 | Application Deployment | WS 2014/15




Deploying 50 times a day? H Hasso
Continuous Deployment

Institut

m Advantages:
0 Users get a sense of “soemthing happening” frequently
0 Features are available on the spot

o Error isolation -> reduced downtime for error detection

m Prerequisites/Disadvantages
0 Only feasible with extensive set of GOOD tests (see Chapter 3)
o0 Testing needs to be fast and continuous

0 Deployment effort should be minimal (Capistrano, anybody?)
and take reasonable amounts of time

o Not feasible for applications with high availability requirements



Hasso
. Plattner
Continuous Deployment vs. Scrum ﬂ Institut

m How do 50 deployments a day fit into Scrums notion of Sprints?
m Some ideas (let’s discuss):

0 Intermediate Reviews for individual features by the PO

o Deploying to staging or testing systems becomes part of the
definition of done

0 Acceptance of features not only based on PO approval but user
approval?

SWT2 | Application Deployment | WS 2014/15



