


1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum



■ Delivering late

■ Delivering over budget

■ Delivering the wrong thing

■ Unstable in production

■ Costly to maintain



■ Smart people trying to do good work

■ Stakeholders are well intended

Process in traditional projects

■ Much effort for

□ Documents for formalized hand-offs

□ Templates

□ Review committees

Planning Analysis Design Code Test Deploy



The later we find a defect, the more expensive it is to fix it!

Does front-loading a software development process make sense?

Reality shows:

■ Project plans are wonderful

■ Adjustments & assumptions are made during analysis, design, code

■ Replanning takes place

■ Example: Testing phase at the end

□ Tester raises a defect

□ Programmer claims he followed the specification

□ Architect blames business analyst etc. 

□ Exponential cost

“ ”



■ People are afraid of making changes

■ Unofficial changes are carried out

■ Documents get out of sync

■ ...

Again, why do we do that!? 

To minimize the risk of finding a defect too late…



■ We conduct the front-loaded process to minimize 

exponential costs of change

□ Project plan

□ Requirements specification

□ High-level design documents

□ Low-level design documents

■ This process causes the exponential costs of change!

 A self-fulfilling prophecy

This makes sense for a bridge, ship, or a building 

but software (and Lego) are easy to change!



We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more. http://agilemanifesto.org/

http://agilemanifesto.org/


No longer late or over budget

■ Tiny iterations

■ Easy to calculate budget

■ High-priority requirements first

No longer delivering the wrong thing

■ Strong stakeholder communication

■ Short feedback cycles



No longer unstable in production

■ Delivering each iteration

■ High degree of automation

No longer costly to maintain

■ Maintenance mode starting with Sprint 2

■ Maintenance of multiple versions during development



Outcome-based planning

■ No complete detailed project plan

Streaming requirements 

■ A new requirements process

Evolving design

■ No complete upfront design  flexible 

Changing existing code

■ Need for refactoring



Frequent code integration

■ Continuous integration

Continual regression testing

■ Add nth feature; test n-1 features

Frequent production releases

■ Organizational challenges

Co-located team

■ Keep momentum



Pros and Cons

■ Short planning horizon

■ No up-front design

■ Stories instead of requirement documents

■ Extreme ideology



1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum



Product Backlog Sprint Backlog
Sprint

Working increment
of the software

2 weeks –
1 month

Product Owner
Team

24 h

Scrum Master

Planning

Daily Scrum

Review/
Retrospective



Product 
Owner

Developers

Scrum 
Master

Customer Management



Responsibilities

■ Customer communication

□ Contact person for team

■ Product Backlog

□ User Stories

□ Priorities

■ Acceptance Criteria & Tests



Responsibilities

■ Process manager

□ Moderator in meetings

■ Management communication

□ Remove impediments

■ Enabler, not boss



Responsibilities

■ Communication

□ Critically discuss all inputs

□ Honestly share important information

□ Represent team as expert

■ Sprint Backlog

■ Developing ;-)



List of work items

■ Requirements (modification requests)

□ Features

□ Bug fixes

■ Ordered/prioritized



In Scrum, requirements are often defined as user stories:

“As <role>, I want <feature> to <reason>”

Requirements need to fulfill INVEST properties:

■ I – Independent

■ N – Negotiable

■ V – Valuable

■ E – Estimable

■ S – Small

■ T – Testable

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/


Filling the sprint

■ Estimate Backlog items

■ Move items from Product to Sprint Backlog

Defining the work

■ Break down Backlog items into tasks

■ PO not required

Total time: 2 hours per week of sprint



For better planning, stories are broken down into tasks

Tasks should be SMART:

■ S – Specific

■ M – Measurable

■ A – Achievable

■ R – Relevant

■ T – Time-boxed

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/


List of tasks for a sprint

■ Tasks are signed-up for, not assigned

■ During the sprint

□ No new features

□ Team may change/add tasks



Status update

■ Last achievements

■ Next steps

■ Problems

Max. 2 min per person

Discussions?

■ Schedule subsequent expert’s meeting 



Acceptance of Features

■ Demo to PO

□ PO should be prepared

□ Optional: invite other stakeholders

■ Comments by developers



Internal team evaluation

■ PO not required

■ Discuss process and problems

■ Measure improvements



Potentially shippable increment

■ Complete according to Definition of Done

□ Even if not actually released

■ No regrets if project ended now



Team

■ Product Owner

■ Scrum Master

■ Developers

Artifacts

■ Product Backlog

■ Sprint Backlog

■ User Stories

■ Software Increment

Meetings

■ Planning

■ Daily Scrum

■ Review

■ Retrospective



■ Depends on software engineering process

■Highly uncertain, must be negotiated and revised with stakeholders

■Waterfall effort estimation

□Methods: calibrated estimation model based on historical size 

(Function Points, LOC, …); expert judgment; …

□Output: X man-months

■ Agile effort estimation

□ Iterative methods, shorter planning horizon

□Output: functionality to be implemented in the next iteration



Participants

■ Everyone operationally involved in creating the 

software product

■ Product Owner (and Scrum Master) are not playing

Preconditions

■ Product backlog is complete and prioritized

■ Backlog items are known by the team

■ The effort for a small backlog item was determined as a reference

■ Every participant has a set with sizing cards



■ Product owner explains a backlog item

■ Product owner answers questions of team members

■ Every participant evaluates the complexity of the backlog item and 

chooses a card (hidden)

■ All cards are shown simultaneously

■ Participants with highest and lowest number explain choices

■ The arguments are discussed in the group



■ A new vote is conducted

■ Team agrees on item size

□Most occurring or average value is acceptable

□ If not, another round is played

■ The moderator notes size of backlog item in the product backlog

■ The game ends if all backlog items are sized or time is over



Begin the sprint

■ Select stories until sprint is full

■ Break down stories into tasks and fill your Scrum Board

■ Assign stories to developer(s)

■ Implement the stories task by task



Talk to User / 
Review Existing 
System

• Informal List 
of Desired 
Functionality

Create and 
Prioritize User 
Stories

• GithubTickets

• Acceptance 
Tests

Present User 
Stories to Team

• List of User 
Stories that 
the Team will 
tackle

Reiterate every Sprint



Estimate User 
Story Effort 

(Planning Poker)

Create and 
Estimate Tasks
per User Story

Create Unit Test &
Implement Task

Push
Feature

Update Tickets,
Create 

Documentation

Repeat until 
Feature is finished,
Run tests frequently

Done and sprint is not over, yet?

■ Help your teammates

■ Refactor, write tests, document 

■ Ask the Product Owner 

for more work







What’s needed in such an environment?

■ Development process

■ Communication on multiple levels

■ Infrastructure for collaboration



Start small and grow organically

■ Single Scrum team for preparation

■ Work out foundation for the first sprints

■ Scale when it becomes necessary

We are now at the first scaling point!

■ Rudimentary architecture is present

■ Infrastructure is prepared and ready to go





[Christoph Mathis, Scrum Center]

Main 
Product Backlog

Chief 
Product Owner

PO Team A

PO Team B

PO Team C

Update at the end of each sprint to 
consolidate team results

Team
Product Backlogs

Just-in-time update 
before the 

synchronized planning



■ Preparation

□ Individual review and retrospection meetings

□Meeting of all teams with 1-2 members each:

– Review of the last sprint

– Input dependencies (What is needed)

– Output dependencies (What needs to be delivered)

■ Execution

□ Individual plannings (strict timeboxing)

□ Discussion of identified additional input or output dependencies

□ Final sprint planning

■ Problem: Time consuming & high degree of coordination needed!



Another Option: Co-located planning

One Room

Team 1

Team 2

Team 3

Team 4

POs

Team 6

Team 5

Team 7

Team 8



Goal: Synchronize team effort with minimal coordination overhead

■ Regular meeting of all Scrum masters. 

□ Developers join if necessary (ambassador principle)

■ Scrum masters 

□ Share their learnings

□ Report completions & next steps

□ Coordinate inter-team dependencies

□ Negotiate responsibility

■ Developers discuss technical interfaces across teams 

■ Distribute information back into the teams



1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum



■ "ST vs Gloucester - Match - 23" by PierreSelim - Own work. Licensed under 

Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:ST_vs_Gloucester_-_Match_-

_23.JPG#mediaviewer/File:ST_vs_Gloucester_-_Match_-_23.JPG

■ "Scrum process" by Lakeworks - Own work. Licensed under Creative 

Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Scrum_process.svg#mediaviewer/F

ile:Scrum_process.svg

■ „Wien - Seestadt, SW-Areal 2013 (2)“ von Bwag - Eigenes Werk. Lizenziert

unter Creative Commons Attribution-Share Alike 3.0-at über Wikimedia 

Commons - http://commons.wikimedia.org/wiki/File:Wien_-_Seestadt,_SW-

Areal_2013_(2).JPG#mediaviewer/File:Wien_-_Seestadt,_SW-

Areal_2013_(2).JPG

http://commons.wikimedia.org/wiki/File:ST_vs_Gloucester_-_Match_-_23.JPG#mediaviewer/File:ST_vs_Gloucester_-_Match_-_23.JPG
http://commons.wikimedia.org/wiki/File:Scrum_process.svg#mediaviewer/File:Scrum_process.svg
http://commons.wikimedia.org/wiki/File:Wien_-_Seestadt,_SW-Areal_2013_(2).JPGmediaviewer/File:Wien_-_Seestadt,_SW-Areal_2013_(2).JPG

