

“[Formal or informal] meeting during which a software product is

[examined by] project personnel, managers, users, customers, user

representatives, or other interested parties for comment or approval”

[IEEE1028]

■ People-intensive approach instead of using tools

■ Assure that software fulfills the requirements

■ Faults are covered as early as possible

■ Projects gets more manageable by identifying new risks

■ Improvement of communication

■ Further education of participants

■ Software gets more visible

[Giese]

[http://community.acs.org/journals/acbcct/cs/Portals/0/wiki/PeerReview.jpg]

Manager

■ Assessment is an important task for manager

■ But: Lack of technical understanding

■ But: Assessment of a product vs. assessment of a person

Outsider in review process, but should support with resources

(time, staff, rooms, …)

Developer

■ Should not justify but only explain their results

■ No boss should take part at review

[Giese]

Team leader

■ Responsible for quality of review

■ Technical, personal and administrative competence

■ Moderation of review meetings

Reviewer

■ Study the material before first meeting

■ Don’t try to achieve personal targets!

■ Gives positive and negative comments on review artifacts

□ Not on the author!

Recorder

■ Any reviewer, can rotate even in review meeting

■ Protocol as basis for final review document

[Giese]

Deliver a good review

■ “Don’t shoot the messenger”

■ Find problems, but don’t try to solve them

Artifact of interest should be assessed

■ Accepted, partly accepted, needs corrections, rejected

■ Acceptance only possible if no participant speaks against it

Problems should be clearly identified/ extracted

[Giese]

Team members: In general staff with personal interest in a good result

Review as basis for management decisions

Potential members

■ Representative of team which build artifact (not the author!)

■ Representative of customer

■ Representative of team which will use the artifact

■ Representative of QA unit

■ Experienced staff or outsiders to ensure objectivity

3-6 members (with some extra viewers)

[Giese]

“The purpose of a management review is to monitor progress, determine

the status of plans and schedules, confirm requirements and their system

allocation, or evaluate the effectiveness of management approaches used

to achieve fitness for purpose” [IEEE1028-97]

■ Support decisions about changes and corrective actions that are

required during a software project

■ Determine the adequacy of plans, schedules, and requirements and

monitor their progress or inconsistencies

“The purpose of a technical review is to evaluate a software product to

determine its suitability for its intended use. The objective is to identify

discrepancies from approved specifications and standards. The results

should provide management with evidence confirming (or not) that the

product meets the specifications and adheres to standards, and that

changes are controlled” [IEEE1028-97]

■ Roles: a decision-maker, a review leader, a recorder, and technical staff

to support the review activities

■ Inputs: Statement of objectives, a specific software product, the

specific project management plan, the issues list associated with this

product, the technical review procedure

“The purpose of an inspection is to detect and identify software product

anomalies” [IEEE1028-97]

■ Team members checks the material/ artifacts independently

■ Consolidation of results in meeting of team members and developer

■ Focus on important parts of software

■ Meetings gets more structured/ shorter, but much preparation time for

each team member

“The purpose of a walk-through is to evaluate a software product. A walk-

through may be conducted for the purpose of educating an audience

regarding a software product.” [IEEE1028-97]

■ Similar to inspection but typically less formally

■ Organized by developer/ software engineer for reviewing his own work

■ Bigger audience can participate at meeting (e.g. for education

purposes)

■ Few preparation for team members

Should be reviewed Don’t have to be reviewed

Parts with complicated algorithms Trivial parts where no complications are
expected

Critical parts where faults could have bad
effects

Parts which won’t break the functionality
if faults occur

Parts using new technologies/
environment/ …

Parts which are similar to some which has
been reviewed in previous meetings

Parts which has been constructed by
inexperienced team members

Reused or redundant parts

[Galin2004]

[Giese, 2012]

Gerrit: https://code.google.com/p/gerrit/

■ Integrated with Github: http://gerrithub.io

■ Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.

Review Ninja: http://review.ninja

■ Github integration

FishEye: https://www.atlassian.com/software/fisheye/overview

■ Visualize, Review, and organize code changes

https://code.google.com/p/gerrit/
http://gerrithub.io
http://review.ninja/
https://www.atlassian.com/software/fisheye/overview

■ Reviews are very effective and efficient techniques

■ “Low tech” (without tools)

■Unfortunately, in practice, these techniques aren’t widely-used!

■ Measured code complexity with Flog

■ http://ruby.sadi.st/Flog.html

■ Example input class and report

Test#blah: (11.2)

6.0: eval

1.2: branch

1.2: ==

1.2: puts

1.2: assignment

0.4: lit_fixnum

“Flog shows you the most torturous code you wrote. The more painful
the code, the higher the score.”

http://ruby.sadi.st/Flog.html

Find painful parts:

■ Flay (structual similarities, https://rubygems.org/gems/flay)

■ Reek (code smells, https://github.com/troessner/reek)

■ Cane (code quality, https://github.com/square/cane)

■ …

■ Metric_fu (combines the above,

https://github.com/metricfu/metric_fu/)

■ Rails_best_practices (Rails specific,

https://github.com/flyerhzm/rails_best_practices)

Find slow parts of your code/tests:

■ rake spec SPEC_OPTS=“--profile”

■ Show 10 slowest examples from your test suite

https://rubygems.org/gems/flay
https://github.com/troessner/reek
https://github.com/square/cane
https://github.com/metricfu/metric_fu/
https://github.com/flyerhzm/rails_best_practices

Parameters don’t match params

■

Error handling

■ What if chair application or user don’t exist?

Business logic vs controller logic

■ chair.add_wimi

■ chair_application.accept!

Re-implements Active Record Validation Logic

Acts different than the embodied method

Nightmare to test

Violates Ruby coding conventions

Solution:

■ xyz = Lead.new({:first_name => first_name, :last_name => …})

■ xyz.valid? => false

■ Re-implements Active Record Association Logic

■ Min. 2 SQL queries when you already have the desired object…

■ Solution:

□ belongs_to :seller

■ Re-implements Active Record Finder Logic

■ Major performance issue

■ Violates Ruby coding conventions

■ Solution:

□ SupportTicket.find_all_by_closed(true)

□ SupportTicket.where(:closed => true)

Cluttering the source code with “Mockup Classes” (what’s that anyway?)

Solution:

■ Commit dependent classes very early

■ fill them with content later

■ Predefine interfaces

■ Use ambassadors

■ Stub the methods that you want to use, not the entire classes

Code is error prone

At the wrong place

Violates ruby coding conventions

■ Camelcase methods

■ 2 whitespaces indent per level

Solution:

■ Test with uncommon values (“D”)

■ Suggestion: Move it somewhere else -> Customer?

Self-explanatory method and variable names?

Indent?

Solution:

■ Why not use ruby standard functionality

■ return s || “”

■ return s.nil? ? “” : s

…

Solution – At least do something with that customer…

http://guides.rubyonrails.org

http://rails-bestpractices.com/

http://guised.rubyonrails.org
http://rails-bestpractices.com/

"ScientificReview" by Center for Scientific Review [2] - From Center for

Scientific Review [1], part of the NIH, and thus under public domain.

Licensed under Public Domain via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:ScientificReview.jpg#/media/File

:ScientificReview.jpg

http://commons.wikimedia.org/wiki/File:ScientificReview.jpg#/media/File:ScientificReview.jpg

