Hasso
Plattner
Institut

versitat Potsdam

Behavior-driven Development and
Testing in Ruby on Rails

Arian Treffer
arian.treffer@hpi.de

Software Engineering I Prof. Plattner, Dr. Uflacker
WS 2016/17 Enterprise Platform and Integration Concepts group -

Agenda

Why Behavior-driven Development (BDD)?
Building Blocks of Tests and BDD

Testing Tests & Hints for Successful Test Design
Outlook

Mo E

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Agenda

1. Why Behavior-driven Development (BDD)?
m Goals of Automated Testing
m Writing Software that Matters

2. Building Blocks of Tests and BDD

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Goals of Automated Developer Testing ﬂ

Feature 1: website registration

Developer 1 (no TDD/BDD, browser- Developer 2 (with TDD/BDD, almost no

based testing) browser testing)
Minute 5: working registration page Minute 05.00: working test
Minute 8: feature is tested (3 times) Minute 10.00: working implementation

Minute 10.30: feature is tested (3 times)

Assumptions: 1min manual testing, 10s automatic test

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Goals of Automated Developer Testing ﬂ

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser- Developer 2 (with TDD/BDD, almost no

based testing) browser testing)
Minute 11: implemented Minute 12.30: test ready
Minute 14: tested (3 times) Minute 15.30: implemented

Minute 16.00: tested (3 times)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Goals of Automated Developer Testing ﬂ

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser- Developer 2 (with TDD/BDD, almost no

based testing) browser testing)
Minute 11: implemented Minute 12.30: test ready
Minute 14: tested (3 times) Minute 15.30: implemented
Minute 16.00: tested (3 times)
Minute 17: refactoring ready Minute 19.00: refactoring ready
Minute 19: tested feature 1 Minute 19.10: tested both features
Minute 21: tested feature 2 Minute 20.10: committed

Minute 22: committed

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Goals of Automated Testing

m Find errors faster

m Better code (correct, robust, maintainable)

m Less overhead when testing & tests are used more frequently
m Easier to add new features

m Easier to modify existing features

m But
o Tests might have bugs
o Test environment != production environment
o Code changes break tests

& We’'ll cover a bit of this in this lecture

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Agenda

1. Why Behavior-driven Design (BDD)?
m Goals of Automated Testing
m Writing Software that Matters
2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Writing Software that Matters H

““BDD is about implementing an application by describing

its behavior from the perspective of its stakeholders™
—Dan North

Principles

1. Enough is enough

2. Deliver stakeholder value
3. It’s all behavior

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

BDD Cycle ®

red @
: m;tTests ;

refactor

reiacg @
Acceptance Tests
N V

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

gr,ée“@) }

Adapted from
[Chelimsky et al.:
The Rspec Book, 2010]

10

Definition of Done

How do | know when to stop?
m Acceptance criteria fulfilled
m All tests are green
m Code looks good
m Objective quality goals
m Second opinion
m Internationalization
m Security
m Documentation

The Definition of Done is the team’s consensus of what it takes to
complete a feature.

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

11

Maximum BDD Pyramid

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

12

Vision

All Stakeholders, one statement
m Example: Improve Supply Chain; Understand Customers Better

Core stakeholders have to define the vision
m Incidental stakeholders help understand
o What is possible
o At what cost A
o With what likelihood —

Epics
Use Cases | Features
User Stories | Scenarios

Scenario Steps

TestCases 1 3
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Goals

m How the vision will be achieved.
m Examples
o Easier ordering process
o Better access to suppliers’ information

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Vision
Epics
Use Cases | Features
User Stories | Scenarios

Scenario Steps

TestCases l 1

Epics

m Huge themes / feature sets are described as an “epic”
m Too high level to start coding but useful for conversations

m Examples
o Reporting
o Customer registration

Vision
Goals
Use Cases | Features
User Stories | Scenarios
Scenario Steps

TestCases

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

15

Use Cases / Features

m Describe the behavior we will implement in software
m Can be traced back to a stakeholder
m Warning: Do not directly start at this level
m Is it a waterfall process?
o Yes: We think about goals to be achieved
o No: We just do enough
m Explain the value & context of a feature to stakeholders S
a Not too much detail orls
m Features deliver value to stakeholders -

User Stories | Scenarios

Scenario Steps

TestCases l 6
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

User Stories

m Stories are demonstrable functionality
m 1 Feature a 1..n User Stories
m Stories should be vertical (e.g. no database-only stories)
m User stories are a token for conversations
m Attributes (INVEST)
o Independent
o Negotiable
o Valuable (from a business Point of View)
o Estimable
o Small enough to be implemented in one iteration
o Testable

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Vision
Goals
Epics
Use Cases | Features
Scenario Steps

TestCases

17

User Stories

m Story content
o Title
o Narrative
— Description, reason, benefit
— “As a <stakeholder>, | want <feature> so that <benefit>"
— “In order to <benefit>, a <stakeholder> wants to <feature>"
o Acceptance criteria S
Goals
Epics
Use Cases | Features
Scenario Steps

TestCases

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

18

Scenarios, Scenario Steps,
Test Cases

m 1 User Story a 1..n scenarios
m Each scenario describes one aspect of a User Story
m Describe high-level behavior

m 1 scenario & m scenario steps + step implementation

m 1 scenario step a 0..i tests
m Describe low-level behavior

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Vision
Goals
Epics
Use Cases | Features

User Stories | Scenarios

19

Agile Methodologies

Project
Management

Software
Design

Coding
Techniques

\ 4

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

20

Behavior-driven Development

Principles
m Story-based definition of application behavior
m Definition of features
m Driven by business value

For the developer
m BDD Cycle
m Coding with TDD
m Automated Testing

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

21

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

22

Test::Unit vs. RSpec

m Test::Unit comes with Ruby

class UserTest < Test::Unit::TestCase

def test_first_name
user = User.new
assert_nil user.name, "User®s name was not nil."

user.name = ""Chuck Norris"
assert_equal user.first_name, "Chuck™, "user.first_name did not return "Chuck®.”
end
end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

23

Test::Unit vs. RSpec

m RSpec offers syntactical sugar, different structure
m Many “built-in” modules (e.g. mocking)
m “rspec” command with tools to constrain what examples are run

describe User do

it "should determine first name from name" do

user = User.new '

expect(user.name).to be_nil

user.name = ""Chuck Norris"
expect(user.first_name).to eq "Chuck" Info:
end All following code
examples refer to
end Rspec version 3.2

e We’ll use RSpec

m http://teachmetocode.com/articles/rspec-vs-testunit/

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

24

RSpec Basic structure H

m Using "describe" and "it" like in a conversation
o "Describe an order!" "It sums prices of items."

describe Order do

m describe creates a test / example group context "with one item" do
mit declares examples within group 't# sums prices of items™ do
m context for nested groups / structuring end
end
m Aliases context "with no items" do
o Declare example groups using it "shows a warning” do
describe Or context #oo.
. end
o Declare examples using end
it, specify, Or example end
m https://github.com/rspec/rspec-core/blob/master/README.md 25

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

RSpec Matchers

m General structure of RSpec expectation (assertion):
o expect(..)-to <matcher>, expect(.).not_to <matcher>

Object identity
expect(actual).to be(expected) # passes

Object equivalence

expect(actual).to

Comparisons

expect(actual).to
expect(actual).to
expect(actual).to
expect(actual).to

Collections

eq(expected) # passes

be >= expected

be between(minimum, maximum).inclusive
match(/expression/) # regular expression

start_with expected

expect([])-to be_empty

expect(actual).to

m https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers

include(expected)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

if actual .equal?(expected)

expected

ith many

RSpec also comes Wit
higphly specialized matcl']ers,
that can make tests easler .to
write and understand, e.g.:
expect(actual).to

rgspond_to(expected)
The docs are worth checking
out.

26

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

27

Model Tests

m A Rails model
o Accesses data through an ORM
o Implements business logic
ols “fat”

m Model tests in Rails

o Easiest tests to write
o Test most of application logic

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

28

Hints for Model Tests

m Tests should cover circa 100% of the model code

m Do not test framework functionality like “belongs_to”
m Test your validations

m How many tests? Let tests drive the code a perfect fit

m Minimal test set:

o One test for the “happy-path case”

o One test for each branch

o Corner cases (nil, wrong values, ...), if appropriate
m Keep each test small!

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

29

Model Test Example

app/models/contact.rb

class Contact < ActiveRecord: :Base
validates :name, presence: true

def self.by_letter(letter)
where(“'name LIKE ?", "#{letter}%').order(:name)
end
end

spec/mode ls/contact_spec.rb

require "rails_helper”
describe Contact, :type => :model do

before :each do #do this before each test
@john= Contact.create(name: "John")
@tim = Contact.create(name: "Tim")
@jerry = Contact.create(name: “Jerry®)
end

#the actual test cases
context "with matching letters" do
it "returns a sorted array of results that match” do
expect(Contact.by_letter("J")).to eq [@john, @jerry]
end

it "omits results that do not match™ do
expect(Contact.by_letter(""J")).not_to include @tim
end
end

end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

30

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

31

View Tests

m A Rails view

o Has only minimal logic
o Never calls the database!

o Presents the data passed by the controller

m Challenges for view tests
o Time-intensive
o How to test look & feel?

o Brittle with regard to interface redesigns

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

4

|f you are familiar with
Django, the python web _
framework, the terminology Is
different:

Info:

view (RoR) ~ template (Django)
controller (RoR) ~ view (Django)
Django can be called a 'MTV'
framework.

32

View Tests

m Specify and verify logical and semantic structure
m Goals
o Validate that view layer runs without error
o Check that data gathered by the controller is presented as expected
— Messages on passing empty collections to the view
— Pagination on more than n elements
o Validate security-based output, e.g. for admins

m Do not
o Validate HTML markup
o Evaluate look & feel
o Test for existence of actual text

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

33

View Tests in RSpec

describe "users/index" do
it "displays user name" do
assign(:user,

User.create! :-name => "Bob"
)

path could be inferred from test file
render :template => "users/index.html.erb”

expect(rendered).to match /Hello Bob/
end

end

m https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

T 4

user.save I (notice the “bang”)
raises y
ActiveRecord::RecordInvall
error when user.save
returns false.

https: railsadventures.word ress.com,

2012[07[ZOZrSQec—bang—them—aH[

34

View Tests in RSpec (with Capybara)

require "capybara/rspec”

Rspec.describe "users/index" do Tip: "
it "d!splays user name" do for exploring in irb,
assign(:-user, using Capybara matchers
User.create! :name => "Bob" on strings, use:
)

Capybara. string
path could be

- - t.com,
inferred from test file rosgoct;-thg:ra‘?;?,‘_’an°°,mm.4
- . use-!
render :template => "users/index.html.erb

fragment-or-page
same as before

Ancther Tip:
expect(rendered).to have_content("Hello Bob") CapybarafeatUl'esaWh°|e
a better idea T of helpful "matchers",
expect(rendered).to have_css("a#welcome™) including
expect(rendered).to have xpath("//table/tr") has-g‘_:ﬁzn’
end r\::uncheékedjield-
end i i inicklas/capybara;
m https://github.com/jnicklas/capybara

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

35

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

36

Controller Tests

m A Rails controller
o Is “skinny”
o Calls the model
o Passes data to the view
o Responds with a rendered view

m Goal of controller tests
o Simulate a request
o Verify internal controller state
o Verify the result

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

37

What to Test in Controller Tests?

m Verify that user requests trigger
o Model / ORM calls
o That data s correctly forwarded to view
m Verify handling of invalid user requests, e.g. redirects
m Verify handling of exceptions raised by model calls
m Verify security roles / role-based access control

Remember: Model functionality is tested in model tests!

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

38

Inside Controller Tests

Rails provides helpers to implement controller tests

m 3 important variables are automatically imported
o controller

o request
O response

m Variable getter and setter for
o session — session[:key]

o controller variables — assigns[:key]
o flash — flash[:key]

m Methods to simulate a single HTTP request
o get, post, put, delete

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Info:

RSpec includes this Rails
functionality for

functional tests from
ActionControHer::TestCase::Behavnor

& ActionDisQatch:TestProcess

39

Testing the Controller Response

require "rails_helper”

describe TeamsController, :type => :controller do
describe "GET index" do
it "assigns @teams in the controller” do
team = Team.create

get :index
expect(assigns(:teams)).to eq([team])
end

it "renders the index template" do

get :index
expect(response) .to render_template("'index™)
end
end
end

m http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

40

Background on Controller Tests

m By default, views are not rendered

require "rails_helper”

describe WidgetsController, :type => :controller do
render_views # explicitly render the view

describe "GET index" do
it "says "Listing widgets™" do

get :index
expect(response.body).to match /Listing widgets/im
end
end
end

m http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs/render-views

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

41

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

42

Setup and Teardown - RSpec

As a developer using RSpec

| want to execute arbitrary code before and after examples
So that | can control the environment in which tests are run

before(:example) # run before each example
before(:context) # run one time only, before all of the examples in a group

after(:example) # run after each example
after(:context) # run one time only, after all of the examples in a group

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

43

Setup RSpec - before(:example)

require "rspec/expectations”

class Thing
def widgets
@widgets |1= [
end
end m before(-example) blocks are run

before each example
describe Thing do i . .
before(:exanple) do m :example scope is also available

@thing = Thing.new as :-each
end

describe "initialized in before(:example)™ do
it "has 0 widgets" do
expect(@thing.widgets.count).to eq(0)
end
end
end

m https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

44

Setup RSpec - before(:context) H

require "rspec/expectations”
class Thing
. #as before

describe Thing do

befort_a(:conte>_<t) do m before(:context) blocks are run

@thing = Thing.new before all examples in a group
end . .

m :context scope is also available

context "initialized in before(:context)" do as :all

it “can accept new widgets™ do m Warning: Mocks are only supported in

@thing.widgets << Object.new before(:example)
end)

it "shares state across examples" do
expect(@thing.widgets.count).to eq(l)
end
end
end
m https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks 45

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Teardown RSpec

describe "Test the website with a browser™ do
before(:context) do
@browser = Watir::Browser.new
end

it "should visit a page" do

end

after(:context) do
@browser.close

end
end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

m after(zcontext) blocks are run after

all examples in a group
m For example to clean up

46

Test Run

m Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

v

Initial Database
preset

For each file

For each test

|

Identify files
to run

P

Identify tests
to run

Run test

Run

teardown

Database
reset

47

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

48

Isolation of Test Cases

m Tests should be independent
m If abuginamodel is introduced

o Only tests related to this model should fail
m How to achieve this?

o Don’t share complex test data

o Don’t use complex objects

. . o X . . Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests 4 9
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Test Data Overview

Two main ways to provide data to test cases:

m Fixtures
o Fixed state at the beginning of a test
o Assertions can be made against this state

m Factories

o Blueprints for models
o Used to generate test data locally in the test

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

50

Fixture Overview

m Fixtures represent sample data
m Populate testing database with predefined data before tests run '
. . . Info:
m Stored in database independent YAML files (.yml) By default, test_hellper.'gb
. . - s 0 t helper
m One file per model, location: test/fixtures/<name>.yml m,‘*ﬁ;ifau?&iu:es into the
database.
test/Ffixtures/users.yml ;0tef;;‘;f§,;°§§.‘§§23tb‘l?§?é
david: # Each fixture has a name .'g‘a‘;mg,
name: David Heinemeier Hansson

birthday: 1979-10-15

profession: Systems development Another Info:

Fixture data can be
nan accessed by using a w
name: Steve Ross Kellock special dynamic met ;:S,
rofession: guy with with thz s|ame name
- - el:
profession: guy with keyboard g
users (:steve).name ’
=> Steve Ross Kelloc
m http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

m http://quides.rubyonrails.org/testing.html
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

51

Why Fixtures are a Pain

m Fixtures are global
o Only one set of data, every test has to deal with all test data

m Fixtures are spread out
o Own directory
o One file per model & data for one test is spread out over many files
o Tracing relationships is a pain
m Fixtures are distant
o Fixture data is not immediately available in the test
o expect(users(:ernie).age + users(:bert).age).to eq(20)

m Fixtures are brittle
o Tests rely on fixture data, they break when data is changed
o Data requirements of tests may be incompatible

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 5 2

Fixing Fixtures with Factories

Test data should be:

m Local

o Defined as closely as possible to the test
m Compact

o Easy and quick to specify; even for complex data sets
m Robust

o Independent from other tests

& Our choice to achieve this: Data factories

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

53

Data Factories

m Blueprint for sample instances
m Rails tool support
o Factory Girl (our choice)
o Machinist
o Fabrication
o FixtureBuilder
o Cf. https://www.ruby-toolbox.com/cateqgories/rails fixture replacement

m Similar structure
o Syntax for creating the factory blueprint
o API for creating new objects

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

54

Defining Factories

This will guess the User class
FactoryGirl.define do
factory :-user do
first_name "John"
last_name '"Doe"
admin false
end

This will use the User class

(Admin would have been guessed)

factory :-admin, class: User do
first_name "Admin”
last_name "User"
admin true

end

end

m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

e

Factories can be defined
anywhere, butare
automatically |oa_ded if
they are defined in:

. test/Factor‘ies.rb

. spec/factor‘ies.rb

. test/factor‘ies/*.rb
. spec/factor‘ies/*.r‘b

55

Using Factories

m Build strategies: build, create (standard), attributes_for, build_stubbed

Returns a User instance that"s _not_ saved
user = build(:user)

Returns a _saved_ User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Passing a block to any of the methods above will yield the return object
create(-user) do |user]
user.posts.create(attributes_for(:post))

end
m http://www.rubydoc.info/gems/factory_qirl/file/GETTING_STARTED.md
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 5 6

Attributes

Lazy attributes

factory :user do
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }

end

Dependent attributes
factory :-user do

first_name "Joe"

last_name "Blow"

email { "#{Ffirst_name}._#{last_name}@example.com"._downcase }
end

override the defined attributes by passing a hash
create(:user, last name: "Doe").email
=> "joe.doe@example.com"

m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

57

Associations

factory :post do
If factory name == association name, the factory name can be left out.
author

End

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last _name: "Writely“
End

Builds and saves a User and a Post
post = create(:post)

post.new_record? # => false
post.author.new_record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)

post.new_record? # => true

post.author.new_record? # => false

m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md 5 8

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Inheritance

The title attribute is required for all posts
factory :post do

title "A title"”
End

An approved post includes an extra field

factory :approved_post, parent: :post do
approved true

end

m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

59

Sequences for Unique Values

Defines a new sequence
FactoryGirl.define do

sequence :email do |n] # in lazy attribute
""person#{n}@example.com" factory :invite do
end invitee { generate(:email) }
end end

generate :email # => "personl@example.com™ # In-line sequence for a factory
generate :email # => "person2@example.com” factory :user do

sequence(:email) {|n] "person#{n}@example.com"}

Sequences can be used as attributes end
factory :user do
email
end
m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md 6 O
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Callbacks H

factory_girl makes four callbacks available for injecting code:

after(:build)- called after the object is built (via Factoryirl.build, FactoryGirl.create)
before(:create) - called before the object is saved (via FactoryGirl.create)
after(:create) - called after the object is saved (via FactoryGirl .create)

after(:stub) - called after the object is stubbed (via FactoryGirl .bui ld_stubbed)

Call customize() after the user is built
factory :user do

after(:build) { |user] customize(user) }
end

multiple types of callbacks on the same factory
factory :-user do
after(:build) { Juser| customize(user) }
after(:create) { |Juser] customize_ further(user) }
end

m http://www.rubydoc.info/gems/factory girl/file/GETTING STARTED.md

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

61

Factory Girl - Further Reading

m Faster tests with build_stubbed
o https://robots.thoughtbot.com/use-factory-girls-build-stubbed-for-a-faster-test

m Tips and tricks
o http://arjanvandergaag.nl/blog/factory girl tips.html

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

62

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

63

Isolation of Test Cases

m Tests should be independent
m Ifabuginamodelisintroduced

o Only tests related to this model should fail
m How to achieve this?

o Don’t share complex test data

o Don’t use complex objects

. . o X . . Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests 6 4
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Test Doubles

m Generic term for object that stands in for a real object during a test
o Think “stunt double”
m Purpose: automated testing

m Used when
o Real object is unavailable
o Real object is difficult to access or trigger
o Following a strategy to re-create an application state
o Limiting scope of the test to the object/method currently under test

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

65

Verifying Behavior During a Test

m Usually: test system state after a test

o Only the result of a call is tested, intermediate steps are not considered
m With test doubles: Test system behavior

o E.g. How often a method is called, in which order, with which parameters

0 N rd

.K H.

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

66

Ruby Test Double Frameworks

Many frameworks available:
m RSpec-mocks
m Mocha
m FlexMock

(http://github.com/rspec/rspec-mocks)

(https://github.com/freerange/mocha)

(https://github.com/jimweirich/flexmock)

. . . Tip:
A collection of mocking frameworks (as well as many others): | ;o
m https://www.ruby-toolbox.com/categories/mocking

"rspec/mocks/standalone“

exposes the mock
= i framework outside the
€ We recommend RSpec-Mocks as it

Rspec environment. This is
shares a common syntax with RSpec e o
exploring in irb.

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

67

Stubs

m Method call on the real object does not happen
m Returns a predefined value if called

m Strict by default (error when messages received that have not been allowed)
dbl = double(“user™)
allow(dbl).to receive_messages (:name => “Fred”, :age => 21)

expect (dbl.name).to eq(“Fred”) #this is not really a good test :)
dbl _height #raises error (even if your original object had that property)

m Alternatively, if all method calls should succeed: Null object double

dbl = double(“user”).as_null_object
dbl _height # this is ok! Returns itself (dbl)

m http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

68

Spies

m Stubs with Given-When-Then structure

m Allows to expect that a message has been received after the message call

dbl = spy(“'user™)
dbl.height

dbl.height
expect(dbl).to have_received(:height).at_least(2).times

m Alternatively, spy on specific messages of real objects

user = User.new

allow(user).to receive(:height)

Given a user Info:
user.measure_size

When 1 measure the size |This pattern for
expect(user).to have received(:height) # Then height is called

tests is also called

act-arrange-assert

m http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

69

Mocks

m Mocks are Stubs with attitude

m Demands that mocked methods are called

book = double("'book™, :title => "The RSpec Book')
expect(book).to receive(:open).once # "once” is default
book.open # this works

book.open # this fails

m Or as often as desired

user = double("'user™)

expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level _up).at least(4).times
expect(user).to receive(:notify).at _most(3).times

m If test ends with expected calls missing, it fails!

m https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

70

Stubs vs. Mocks

Stub (passive)

m Returns a predetermined value for a method call
dbl = double("a user™)
allow(dbl).to receive (:name) => { "Fred" }
expect (dbl.name).to eq(''Fred"™) #this is not really a good test :)

Mock (more aggressive)

m In addition to stubbing: set a “message expectation”
m If expectation is not met, i.e. the method is not called a test failure

4

dbl = double(“a user™)

Info:
the
expect(dbl).to receive(:name) rLlfgselieyword
dbl _name #without this call the test would fail

refers to a stub,
expect toa mock.
This might vary by
framework.

& Stubs don‘t fail your tests, mocks can!

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

71

Partially Stubbing Instances

m Sometimes you want only part of your object to be stubbed

o Many methods on object, only expensive ones need
stubbing for a test

m Extension of a real object in a system that is instrumented
with stub like behaviour

m “Partial test double” (in RSpec terminology)

s = "a user name" # s.length == 11

allow(s).to receive(:length)._and_return(9001)

expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

m http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

(2

Class Methods

m Class methods can also be stubbed
m Example: Stubbing the User class
o The database is not touched, a specific instance is returned

o “find” cannot be verified anymore but tests based on “find” can be isolated
& just test the logic that is under test

u = double(a user™)
allow(User).to receive(:find) {u} # “User” is a class
expect (User.find(1))-to eq(u) # the class method was stubbed

m http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

73

Multiple Return Values

m A stub might have to be invoked more than once
m Return values for each call (in the given order)

die = double("a rigged die™)
allow(die).to receive(:roll).and_return(4,5,6) # a better version

puts die.roll # =>4
puts die.roll # => 5
puts die.roll # => 6
puts die.roll # => 6

last value is returned for any subsequent invocations

m https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value 7 4

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Method Stubs with Parameters H

Allow failure when calling stub with wrong parameters
Respond differently based on passed parameters

m A mock / expectation will only be satisfied when called with matching arguments

calc = double(*calculator™) '
allow(calc).to receive(:double).with(4).and_return(8)
expect(calc.double(4)).-to eq(8) # this works Info:
These are only
a few of the
m Calling mock with wrong parameters fails: matchers
- " RSpec-mocks
dbl = double("spiderman') provides.

anything matches any argument
expect(dbl).to receive(:injury).with(l1, anything, /bar/)
dbl_injure(l, "lightly®, "car") # this fails, "car" does not match /bar/

m https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments 7 5

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Raising Errors

m A stub can raise an error when it receives a message
m Allows easier testing of exception handling

dbl = double()

Warning:
allow(dbl).to receive(:foo).and_raise(''boom™)

There is a semantic
dbl.foo # This will fail with: difference between
raise & rescue
Failure/Error: dbl.foo (exception handling)
RuntimeError: and throw & catch
boom

(control flow) in Ruby.

ruby—gotchas-and—caveats[

m https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

76

Verifying Doubles

m Stricter alternative to normal doubles

m Check that methods being stubbed are actually present on the underlying
object (if it is available)

m Verify that provided arguments are supported
by actual method signature Tip:
class_double()

class Post & object_double)
_ from existing
attr_accessor :title, :author, :body (create » object)
end “template” obJ
also exist.

post = instance_double(""Post') # reference to the class Post
allow(post).to receive(:title)

allow(post).to receive(:message).with (“a msg”) # this fails (not defined)

m https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 7 7

Why Use Mocks?

m Using mocks makes (some) tests more concise

digger = Digger.new # a tracked vehicle
initial_left = digger.left_track.position
initial_right = digger.right_track.position
digger.turn_right # run method being tested

expect(digger.left_track.position - initial_left).to eq(+5)
expect(digger.right_track.position - initial_right).to eq(-5)

VS.

left_track = double("left_track®)
right_track = double("right_track")

digger = Digger.new(left_track, right_track)
left_track.expects(:move).with(+5)
right_track.expects(:move) .with(-5)

digger.turn_right # run method being tested

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 7 8

Test Doubles Pro and Contra

m Disadvantages

o Mock objects have to accurately model the behaviour of
the object they are mocking

o Risk to test a value set by a test double (false positives)

o Possibility to run out of sync with real implementation
a Brittle while refactoring

m Advantages

o The test is focused on behavior

o Speed (e.g. not having to use an expensive database query)

4

It's considered a
best practice to
try to minimize
the amount of
mocked objects.

Info:

o Isolation of tests (e.qg. failure in model does not affect controller test)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

79

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

80

Levels of Testing

e Can the program be
deployed?

» Does the program meet
H Partiall
quality standards? _ ratal

Do the requirements meet the
users' needs? Not automatable!

= Does the program functionality meet
the requirements?

' » Does the program function?

v » Does the code unit function?
S

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

81

Integration & Acceptance Tests ﬂ

m Perform tests on the full system, across multiple components
m Test end-to-end functionality

m Integration Tests
o Build on unit tests, written for developers . ./ 4
o Test component interactions Business

o Consider environment changes
(e.g. database instead of volatile memory)

Acceptance Tests

m Acceptance Tests Technology /
o Check if functionality satisfies the Code
specification from a user perspective >

Test Scope
o Accessible for the stakeholders . .
. . m http://www.testfeed.co.uk/integration-vs-acceptance-tests/
(e.g. using webpage via a browser)

Integration Tests

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 8 2

BDD vs Test Levels

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

83

BDD Implementations

Behavior-driven development (BDD)
m Story-based definition of application behavior
m Definition of features (feature injection)
m Driven by business value (outside-in)

Implementations on different abstraction levels:
m Domain-specific languages (e.g. Cucumber)
o Pro: Readable by non-technicians
o Cons: Extra layer of abstraction, translation to Ruby
m Executable Code (e.g. using testing frameworks, RSpec, Mini::Test)
o Pro: No translation overhead
o Con: Barely readable by domain experts

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

84

Cucumber Test Framework

m Tool for running automated tests written in plain language
m Allows customers / non-technical stakeholders to read & write tests
m Provides runnable feature definitions
m Follows “Given-When-Then” pattern
m Features are located in features/*. feature
m Each line is a “step” that is implemented in Ruby
o e.g. using RSpec and Capybara
o Located in features/step_definitions/*_steps.rb
m Interpreted via regular expressions

m https://cukes.info/ Cu Cumb er

m https://github.com/cucumber/cucumber/wiki

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 8 5

Cucumber Implementation Example

features/calculator_division. feature

features/step_definitions/division_steps.rb

Cucumber feature

Feature: Division
In order to allow users to
calculate fractions, the calculator
should perform correct divisions

Scenario: Floating point numbers
Given the calculator is on
When 1 press 3
And 1 press /

And 1 press 2
And 1 press =
Then 1 should see 1.5

Steps for the Cucumber "Division® feature
implemented in Ruby
require “calculator”

Before do
@calc = Calculator.new

end

Given /the calulator is (on|off)/ do |state]
@calc.power(state)

end

When /1 press (.*)/ do |op]|
@calc.send(op)

end

Then /1 should see (\d+)/ do |result]
expect(@calc.result).to eq(result)

end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

86

Cucumber vs. RSpec Example

Scenario:
Given I am on the authors page
When 1 follow "Add author™
And 1 Fill in the example author
And 1 press "Add"
Then there should be the example author
And 1 should be on the authors page

Cucumber DSL (no implementation)

describe "Author Management" do
example "Add an author" do
visit "/authors/*®
click_button "Add author*
fill_in "Name®", :with => "Brecht”
click_button "Add*®
expect(page).to have_content "Brecht”
end
end

RSpec (with Capybara)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

87

Discussion

m Which one is easier to understand ?
o By programmers
o By business stakeholders

m Which is easier to implement?

m Which one to choose?
o In this project?
o In other projects?

More opinions:
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://cukes.info

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 8 8

Capybara Test Framework

m Simulate how a real user would interact with a web application
m Well suited for writing acceptance & integration tests for web applications
m Provides DSL for “surfing the web”

oe.g.visit, fill_in, click_button
m Integrates with RSpec
m Supports different “drivers”, some support Javascript evaluation

o Webkit browser engine (used in Safari)

o Selenium

— Opens an actual browser window and performs actions within it

m https://github.com/jnicklas/capybara#using-capybara-with-rspec

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

89

Integration & Acceptance Tests H
(with Capybara)

require "capybara/rspec”

describe "the signin process", :type => :feature do
before :-each do

User.make(:email => “user@example.com”, :password => "password®)
end

it "signs me in" do

Tip:
visit "/sessions/new” Capybara includes aliases for
within("#session'™) do RSpec syntax:
fill_in "Email”, :with => "user@example.com” feature instead of
fill_in "Password®, :with => "password”
end

describe .., :type => :feature,
scenario instead of it,
Cxpect(page).to have ¢ packground instead of before,
expect(page).to have css("div#success") e e
end
end

m https://github.com/jnicklas/capybara

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

90

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD
Model Tests

View Tests

Controller Tests

Setup and Teardown

Test Data

Test Doubles

Integration & Acceptance Tests
Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

91

Demo

https://github.com/hpi-swt2/Ruby-on-Rails-TDD-example

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

92

Route Tests

m route_to require "rails_helper”

describe "routes for Widgets", :type => :routing do
it "routes /widgets to the widgets controller™ do
expect(get("/widgets™)).to route_to('widgets#index')

end
end

m be routable require “rails_helper”

describe "routes for Widgets", :type => :routing do
it "does not route to widgets/foo/bar” do
expect(:get => "/widgets/foo/bar’™).not_to be_routable

end
end

m http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/routing-specs/route-to-matcher
m http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/routing-specs/be-routable-matcher

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

93

Outgoing Mail Tests

m Test E-Mail generation (mock delivery)
o Validate that application sends mail when expected
o Validate that email content is what you expect

m For convenience matchers use email-spec gem
(https://github.com/bmabey/email-spec)

describe "POST /signup (#signup)" do
it "should deliver the signup email"™ do

expect(UserMailer).to receive(:deliver_signup).with("email@example.com™, "Jim™)

post :signup, "Email”™ => "email@example.com™, "Name" => "Jim"
end
end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

94

RSpec Testing Mail Content and Metadata

describe "Signup Email™ do, :type => :model do
include EmailSpec::Helpers
include EmailSpec::Matchers
include Rails.application.routes.url_helpers

before(:all) do
@email = UserMailer.create_signup("jojo@yahoo.com", "Jojo Binks')
end

it "should be set to be delivered to the email passed in" do
expect(@email).to deliver_to("jojo@yahoo.com™)
end

it "should contain the user®s message in the mail body" do
expect(@email).to have_body text(/Jojo Binks/)
end

it "should contain a link to the confirmation link" do
expect(@email).to have_body text(/#{confirm_account_url}/)
end

it "should have the correct subject” do
expect(@email).to have_subject(/Account confirmation/)
end
end

95

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Testing Helper Modules

m Helper modules are filled with “the rest”
m Used as mediator between views and models or views and controllers
m (Complex) view logic is moved to helpers

Helper
module UsersHelper do
def display_name(user)
"#{user_first_name} #{user.last name}"
end
end

Helper test

it "displays a complete user name'" do
@user = User.new(:first_name => "Garry", :last _name -> "Meyer'™)
expect(display_name(@user)).to eq “Garry Meyer”

end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 9 6

Optimizing the Testing Process

m Automate testing with Guard (https://github.com/guard/guard-rspec)

o Automatically launch tests when files are modified
o Run only the tests related to the change
m Parallelize tests with Spork (nhttps://github.com/sporkrb/spork-rails)

o Especially relevant with many time-consuming acceptance tests

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

97

Agenda

m Why Behavior-driven Design (BDD)?

m Building Blocks of Tests and BDD

m Testing Tests & Hints for Successful Test Design
o Test Coverage
o Fault Seeding
o Mutation Testing

m Outlook

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

98

Test Coverage

m Most commonly used metric for evaluating test suite quality

m Test coverage = executed code during test suite run / all code * 100
m 85 loc / 100 loc = 85% test coverage

m Absence of line coverage indicates a potential problem
m Existence of line coverage means very little

m In combination with good testing practices, coverage might say
something about test suite reach

m Circa 100% test coverage is a by-product of BDD

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

99

How to Measure Coverage?

m Most useful approaches
o Line coverage
o Branch coverage

m Tool
o SimpleCov (https://github.com/colszowka/simplecov)

o Uses line coverage
if (1 >0); 1 +=1: elsei -=1end

& 100% line coverage although 1 branch wasn’t executed

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l O O

SimpleCov

All Files (100.0%) I Controllers (100.0%) I Models (100.0%) I Mailers (100.0%) I Helpers (100.0%) I Libraries (100.0%) I Plugins (100.0%) I

All Files (100.0% covered at 1.35 hits/line)

6 files in total. 41 relevant lines. 41 lines covered and 0 lines missed

Search:
File % covered Lines Relevant Lines Lines cove

Q app/controllers/application_controller.rb 100.0 % 5 2 2

Q app/controllers/job_offers_controller.rb 100.0 % 77 34 34

Q app/helpers/application_helper.rb 100.0 % 2 1 1

Q app/helpers/job_offers_helper.rb 100.0 % 2 1 1

Q app/models/job_offer.rb 100.0 % 2 1 1

Q app/models/user.rb 100.0 % 7 2 2

Showing 1 to 6 of 6 entries

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l O l

SimpleCov

def new
@job_offer = JobOffer.new
end

POST

def create

@job_offer = JobOffer.new(job_offer_params)

respond_to do |fornat|
if @job_offer.save
format.html { redirect_to @job_offer, notice: 'Job offer was successfully created.' }
format.json { render action: 'show', status: :created, location: @job_offer }
else
render_errors_and_redirect_to(@job_offer, 'new’, format)
end
end

def update

respond_to do |format| 0
if @job_offer.update(job_offer_params) 0
format.html { redirect_to @job_offer, notice: 'Job offer was successfully updated.' } (@

format. json { head :no_content }

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

def edit 0o
end

class Devis

m Standalone alternative to CodeClimate
m Methods related to failed tests are marked

unless Devise rack_session? (1]

Indifferenthash < Hash
alios.method :regulerariter, :[l= unless sethod defined?{:regular.)
alios method :regulerupdate, supdete unless sethod defined?(regulor update)

def [1(key)
supertcomvert_keyCkeyd)
end

https://qithub.com/colszowka/simplecov

102

5 Habits of Highly Successful Tests

m Independence
o Of external test data
o Of other tests (or test order)

m Repeatability
o Same results each test run
o Potential Problems
— Date, e.g. Timecop (https://github.com/travisjeffery/timecop)
— Random numbers (try to avoid them or stub the generation)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l O 3

5 Habits of Highly Successful Tests

m Clarity
o Test purpose should be immediately understandable
o Tests should be simple, readable
o Make it clear how the test fits into the larger test suite

o Worst case:
it "sums to 37" do

expect(37).to eq(User.all_total_points)
end

O Better:

it "rounds total points to nearest integer" do
User.add_points(32.1)
User.add_points(5.3)
expect(37).to eq(User.all_total_points)

end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

104

5 Habits of Highly Successful Tests H

def assert_user_level(points, level)

m Conciseness user = User.make(:points => points)

o Use the minimum amount of expect(level).to eq(user.level)
code and objects end
o Clear beats concise it test_user_point_level

e s ; assert_user_level (1, novice™)
= ertlng the minimum reqwred assert_user_level (501, "apprentice™)

amount of tests for a feature assert_user_level (1001, journeyman™)

a Test suite will be faster assert_user_level (2001,"guru™)
assert_user_level (5001, "super jedi rock star™)

assert_user_level (0, novice™)
assert_user_level (500, "novice™)
assert_user_level(nil,"novice™)

end
m Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions. pdf 105

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Conciseness: ﬂ
How many Assertions per Test?

m If a single call to a model results in many model changes:

o High number of assertions a High clarity and cohesion
o High number of assertions & Low test independence

& Use context & describe and have 1 assertion per test

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l O 6

5 Habits of Highly Successful Tests

m Robustness
o Underlying code is correct & test passes
o Underlying code iswrong & test fails
o Example: view testing

describe "the signin process"”, :type => :feature do
it "signs me in (text version)" do
visit "/dashboard”
expect(page).to have_content “My Projects”
end
version below is more robust against text changes
it "signs me in (css selector version)" do
visit "/dashboard”
expect(page).to have_css "h2#projects”
end
end

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

107

5 Habits of Highly Successful Tests

m Robustness
o Reusable constants instead of magic numbers

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

def test_user_point_level
assert_user_level (User::NOVICE_BOUND + 1, "novice™)
assert_user_level (User::APPRENTICE_BOUND + 1, "apprentice’)
...

end

o But be aware of tests that always pass regardless of underlying logic

m Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions. pdf
Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

Troubleshooting

m Reproduce the error '

Tip:
. it-bisectisa
o Write a test B werful it tool that
help isolate the
m What has changed? o g that caused 2
o Isolate commit/change that causes failure bug by binary search
. through the commit
m Isolate the failure

history.
- - httg:[[git—scm.com[docs[git-bisect
o thing. inspect

o Add assertions/prints to your test
o Rails.logger.error
o save_and_open_page
(Capybara method to take a snapshot of a page)
m Explain to someone else

o Rubber duck debugging

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

http://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg l O 9

Manual Fault Seeding

m Conscious introduction of faults into the program
m Run tests
m Minimum 1 test should fail

If no test fails, then a test is missing

m Possible even with 100% line coverage
m Asserts functionality coverage

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l l O

Mutation Testing

Mutant: Modified version of the program with small change
m Tests correctly cover code a Test should notice change and fail

next_month:

if month > 12 then
year += month / 12

Program -
Tests pass for SoVEE lgonth = month % 12
en

Test ‘1,

Cases
- if not month > 13 then
year -= month / 12
month— —month-%12

Tests fail for

m Mutation Coverage: How many mutants did not cause a test to fail?
Asserts functionality & behavior coverage

o For Ruby: Mutant (nhttps://github.com/mbj/mutant)

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

111

Summary

BDD Testing Hierarchy
m Motivation m Integration Tests
m BDD Cycle m Acceptance Tests
TDD Test Quality
m Pros & Cons m Coverage

m Mutation Tests
Automated Testing
m Model/View/Controller
m Test Data
m Test Doubles

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17

112

Further Reading H

http://betterspecs.org — Collaborative RSpec best practices documentation effort

Everyday Rails Testing with RSpec by Aaron Sumner, leanpub
The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends
by David Chelimsky et al.

Rails 4 Test Prescriptions: Build a Healthy Codebase by Noel Rappin, Pragmatic
Programmers 2014

Quizzes
http://www.codequizzes.com/rails-test-driven-development/controller-specs
http://www.codequizzes.com/rails-test-driven-development/model-specs

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 1 1 3

Outlook (Dec 4, 15t slot)

Retrospective Sprint #1
Code Review Techniques
Scrum Tips & Tricks
Deployment

Behavior-driven Developmentand Testing in Ruby on Rails — Software Engineering Il — WS 2016/17 l l 4

