
Behavior-driven Development and
Testing in Ruby on Rails

Arian Treffer
arian.treffer@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts group

Software Engineering II
WS 2016/17

Agenda

1. Why Behavior-driven Development (BDD)?
2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 2

Agenda

1. Why Behavior-driven Development (BDD)?
■ Goals of Automated Testing
■ Writing Software that Matters

2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 3

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 5: working registration page

Minute 8: feature is tested (3 times)

Minute 05.00: working test

Minute 10.00: working implementation

Minute 10.30: feature is tested (3 times)

Goals of Automated Developer Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 4

Feature 1: Website registration

Assumptions: 1min manual testing, 10s automatic test

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Goals of Automated Developer Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 5

Feature 2: Special case for feature 1

Developer 1 (no TDD/BDD, browser-
based testing)

Developer 2 (with TDD/BDD, almost no
browser testing)

Minute 11: implemented

Minute 14: tested (3 times)

Minute 17: refactoring ready

Minute 19: tested feature 1

Minute 21: tested feature 2

Minute 22: committed

Minute 12.30: test ready

Minute 15.30: implemented

Minute 16.00: tested (3 times)

Minute 19.00: refactoring ready

Minute 19.10: tested both features

Minute 20.10: committed

Goals of Automated Developer Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 6

Feature 2: Special case for feature 1

■ Find errors faster
■ Better code (correct, robust, maintainable)
■ Less overhead when testing à tests are used more frequently
■ Easier to add new features
■ Easier to modify existing features

■ But
□ Tests might have bugs
□ Test environment != production environment
□ Code changes break tests

èWe’ll cover a bit of this in this lecture

Goals of Automated Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 7

Agenda

1. Why Behavior-driven Design (BDD)?
■ Goals of Automated Testing
■ Writing Software that Matters

2. Building Blocks of Tests and BDD
3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 8

BDD is about implementing an application by describing
its behavior from the perspective of its stakeholders

Principles
1. Enough is enough
2. Deliver stakeholder value
3. It’s all behavior

Writing Software that Matters

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 9

“
”

– Dan North

BDD Cycle

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 10

Adapted from
[Chelimsky et al.:
The Rspec Book, 2010]

Unit Tests

Acceptance Tests

■ …?

How do I know when to stop?
■ Acceptance criteria fulfilled
■ All tests are green
■ Code looks good
■ Objective quality goals
■ Second opinion
■ Internationalization
■ Security
■ Documentation

The Definition of Done is the team’s consensus of what it takes to
complete a feature.

Definition of Done

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 11

Maximum BDD Pyramid

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 12

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

All Stakeholders, one statement
■ Example: Improve Supply Chain; Understand Customers Better

Core stakeholders have to define the vision
■ Incidental stakeholders help understand

□What is possible
□ At what cost
□With what likelihood

Vision

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 13

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■How the vision will be achieved.
■ Examples
□ Easier ordering process
□ Better access to suppliers’ information

Goals

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 14

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ Huge themes / feature sets are described as an “epic”

■ Too high level to start coding but useful for conversations

■ Examples
□ Reporting
□ Customer registration

Epics

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 15

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ Describe the behavior we will implement in software
■ Can be traced back to a stakeholder
■ Warning: Do not directly start at this level
■ Is it a waterfall process?

□ Yes: We think about goals to be achieved
□No: We just do enough

■ Explain the value & context of a feature to stakeholders
à Not too much detail

■ Features deliver value to stakeholders

Use Cases / Features

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 16

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ Stories are demonstrable functionality
■ 1 Feature à 1..n User Stories
■ Stories should be vertical (e.g. no database-only stories)
■ User stories are a token for conversations
■ Attributes (INVEST)

□ Independent
□Negotiable
□ Valuable (from a business Point of View)
□ Estimable
□ Small enough to be implemented in one iteration
□ Testable

User Stories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 17

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ Story content
□ Title
□Narrative

– Description, reason, benefit
– “As a <stakeholder>, I want <feature> so that <benefit>”
– “In order to <benefit>, a <stakeholder> wants to <feature>”

□ Acceptance criteria

User Stories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 18

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

■ 1 User Story à 1..n scenarios
■ Each scenario describes one aspect of a User Story
■ Describe high-level behavior

■ 1 scenario àm scenario steps + step implementation
■ 1 scenario step à 0..i tests
■ Describe low-level behavior

Scenarios, Scenario Steps,
Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 19

VisionVision

Goals

Epics

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Agile Methodologies

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 20

Project
Management

Software
Design

Coding
Techniques

Scrum

XP

BDD

TDD

Principles
■ Story-based definition of application behavior
■ Definition of features
■ Driven by business value

For the developer
■ BDD Cycle
■ Coding with TDD
■ Automated Testing

Behavior-driven Development

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 21

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 22

■ Test::Unit comes with Ruby

Test::Unit vs. RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 23

class UserTest < Test::Unit::TestCase

def test_first_name
user = User.new
assert_nil user.name, "User's name was not nil."
user.name = "Chuck Norris"
assert_equal user.first_name, "Chuck", "user.first_name did not return 'Chuck'."

end

end

Test::Unit vs. RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 24

describe User do

it "should determine first name from name" do
user = User.new
expect(user.name).to be_nil
user.name = "Chuck Norris"
expect(user.first_name).to eq "Chuck"

end

end

■ http://teachmetocode.com/articles/rspec-vs-testunit/

■ RSpec offers syntactical sugar, different structure
■ Many “built-in” modules (e.g. mocking)
■ “rspec” command with tools to constrain what examples are run

èWe’ll use RSpec

RSpec Basic structure

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 25

describe Order do
context "with one item" do

it "sums prices of items" do
...

end
end

context "with no items" do
it "shows a warning" do

...
end

end
end

■ Using "describe" and "it" like in a conversation
□ "Describe an order!" "It sums prices of items."

■ describe creates a test / example group
■ it declares examples within group
■ context for nested groups / structuring

■ Aliases
□Declare example groups using
describe or context

□Declare examples using
it, specify, or example

■ https://github.com/rspec/rspec-core/blob/master/README.md

RSpec Matchers

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 26

■ General structure of RSpec expectation (assertion):
□ expect(…).to <matcher>, expect(…).not_to <matcher>

Object identity
expect(actual).to be(expected) # passes if actual.equal?(expected)

Object equivalence
expect(actual).to eq(expected) # passes if actual == expected

Comparisons
expect(actual).to be >= expected
expect(actual).to be_between(minimum, maximum).inclusive
expect(actual).to match(/expression/) # regular expression
expect(actual).to start_with expected

Collections
expect([]).to be_empty
expect(actual).to include(expected)

■ https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 27

■ A Rails model
□ Accesses data through an ORM
□ Implements business logic
□ Is “fat”

■ Model tests in Rails
□ Easiest tests to write
□ Test most of application logic

Model Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 28

■ Tests should cover circa 100% of the model code
■ Do not test framework functionality like “belongs_to”
■ Test your validations
■ How many tests? Let tests drive the codeà perfect fit

■ Minimal test set:
□One test for the “happy-path case”
□One test for each branch
□ Corner cases (nil, wrong values, …), if appropriate

■ Keep each test small!

Hints for Model Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 29

Model Test Example

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 30

class Contact < ActiveRecord::Base
validates :name, presence: true

def self.by_letter(letter)
where("name LIKE ?", "#{letter}%").order(:name)

end
end

require 'rails_helper'

describe Contact, :type => :model do

before :each do #do this before each test
@john= Contact.create(name: 'John')
@tim = Contact.create(name: 'Tim')
@jerry = Contact.create(name: 'Jerry')

end

#the actual test cases
context "with matching letters" do
it "returns a sorted array of results that match" do

expect(Contact.by_letter("J")).to eq [@john, @jerry]
end

it "omits results that do not match" do
expect(Contact.by_letter("J")).not_to include @tim

end
end

end

app/models/contact.rb

spec/models/contact_spec.rb

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 31

■ A Rails view
□Has only minimal logic
□Never calls the database!
□ Presents the data passed by the controller

■ Challenges for view tests
□ Time-intensive
□How to test look & feel?
□ Brittle with regard to interface redesigns

View Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 32

■ Specify and verify logical and semantic structure
■ Goals

□ Validate that view layer runs without error
□ Check that data gathered by the controller is presented as expected

– Messages on passing empty collections to the view
– Pagination on more than n elements

□ Validate security-based output, e.g. for admins

■ Do not
□ Validate HTML markup
□ Evaluate look & feel
□ Test for existence of actual text

View Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 33

View Tests in RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 34

describe "users/index" do
it "displays user name" do

assign(:user,
User.create! :name => "Bob"

)

path could be inferred from test file
render :template => "users/index.html.erb"

expect(rendered).to match /Hello Bob/
end

end

■ https://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/view-specs/view-spec

View Tests in RSpec (with Capybara)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 35■ https://github.com/jnicklas/capybara

require 'capybara/rspec'

Rspec.describe "users/index" do
it "displays user name" do

assign(:user,
User.create! :name => "Bob"

)

path could be inferred from test file
render :template => "users/index.html.erb"

same as before
expect(rendered).to have_content('Hello Bob')
a better idea
expect(rendered).to have_css('a#welcome')
expect(rendered).to have_xpath('//table/tr')

end
end

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 36

■ A Rails controller
□ Is “skinny”
□ Calls the model
□ Passes data to the view
□ Responds with a rendered view

■ Goal of controller tests
□ Simulate a request
□ Verify internal controller state
□ Verify the result

Controller Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 37

■ Verify that user requests trigger
□Model / ORM calls
□ That data is correctly forwarded to view

■ Verify handling of invalid user requests, e.g. redirects
■ Verify handling of exceptions raised by model calls
■ Verify security roles / role-based access control

Remember: Model functionality is tested in model tests!

What to Test in Controller Tests?

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 38

Rails provides helpers to implement controller tests
■ 3 important variables are automatically imported

□ controller
□ request
□ response

■ Variable getter and setter for
□ session – session[:key]

□ controller variables – assigns[:key]

□ flash – flash[:key]

■ Methods to simulate a single HTTP request
□ get, post, put, delete

Inside Controller Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 39

Testing the Controller Response

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 40

require "rails_helper"

describe TeamsController, :type => :controller do
describe "GET index" do

it "assigns @teams in the controller" do
team = Team.create
get :index
expect(assigns(:teams)).to eq([team])

end

it "renders the index template" do
get :index
expect(response).to render_template("index")

end
end

end

■ http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs

■ By default, views are not rendered

Background on Controller Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 41

require "rails_helper"

describe WidgetsController, :type => :controller do
render_views # explicitly render the view

describe "GET index" do
it "says 'Listing widgets'" do

get :index
expect(response.body).to match /Listing widgets/im

end
end

end

■ http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/controller-specs/render-views

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 42

Setup and Teardown – RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 43

As a developer using RSpec
I want to execute arbitrary code before and after examples
So that I can control the environment in which tests are run

before(:example) # run before each example
before(:context) # run one time only, before all of the examples in a group

after(:example) # run after each example
after(:context) # run one time only, after all of the examples in a group

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:example)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 44

■ before(:example) blocks are run
before each example

■ :example scope is also available
as :each

require "rspec/expectations"

class Thing
def widgets

@widgets ||= []
end

end

describe Thing do
before(:example) do

@thing = Thing.new
end

describe "initialized in before(:example)" do
it "has 0 widgets" do

expect(@thing.widgets.count).to eq(0)
end

end
end

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:context)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 45

■ before(:context) blocks are run
before all examples in a group

■ :context scope is also available
as :all

■ Warning: Mocks are only supported in
before(:example)

require "rspec/expectations"
class Thing
... #as before

describe Thing do
before(:context) do

@thing = Thing.new
end

context "initialized in before(:context)" do
it "can accept new widgets" do

@thing.widgets << Object.new
end

it "shares state across examples" do
expect(@thing.widgets.count).to eq(1)

end
end

end

Teardown RSpec

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 46

describe "Test the website with a browser" do
before(:context) do

@browser = Watir::Browser.new
end

it "should visit a page" do
...

end

after(:context) do
@browser.close

end
end

■ after(:context) blocks are run after
all examples in a group

■ For example to clean up

Test Run

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 47■ Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Run setup

Run
teardown

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 48

Isolation of Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 49Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

■ Tests should be independent
■ If a bug in a model is introduced

□ Only tests related to this model should fail
■ How to achieve this?

□ Don’t share complex test data
□ Don’t use complex objects

Two main ways to provide data to test cases:

■ Fixtures
□ Fixed state at the beginning of a test
□ Assertions can be made against this state

■ Factories
□ Blueprints for models
□Used to generate test data locally in the test

Test Data Overview

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 50

■ Fixtures represent sample data
■ Populate testing database with predefined data before tests run
■ Stored in database independent YAML files (.yml)
■ One file per model, location: test/fixtures/<name>.yml

Fixture Overview

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 51
■ http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

■ http://guides.rubyonrails.org/testing.html

test/fixtures/users.yml
david: # Each fixture has a name
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development

steve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: guy with keyboard

■ Fixtures are global
□ Only one set of data, every test has to deal with all test data

■ Fixtures are spread out
□ Own directory
□ One file per model à data for one test is spread out over many files
□ Tracing relationships is a pain

■ Fixtures are distant
□ Fixture data is not immediately available in the test
□ expect(users(:ernie).age + users(:bert).age).to eq(20)

■ Fixtures are brittle
□ Tests rely on fixture data, they break when data is changed
□ Data requirements of tests may be incompatible

Why Fixtures are a Pain

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 52

Test data should be:

■ Local
□Defined as closely as possible to the test

■ Compact
□ Easy and quick to specify; even for complex data sets

■ Robust
□ Independent from other tests

è Our choice to achieve this: Data factories

Fixing Fixtures with Factories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 53

■ Blueprint for sample instances
■ Rails tool support

□ Factory Girl (our choice)
□Machinist
□ Fabrication
□ FixtureBuilder
□ Cf. https://www.ruby-toolbox.com/categories/rails_fixture_replacement

■ Similar structure
□ Syntax for creating the factory blueprint
□ API for creating new objects

Data Factories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 54

Defining Factories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 55

This will guess the User class
FactoryGirl.define do
factory :user do

first_name "John"
last_name "Doe"
admin false

end

This will use the User class
(Admin would have been guessed)
factory :admin, class: User do

first_name "Admin"
last_name "User"
admin true

end
end

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

■ Build strategies: build, create (standard), attributes_for, build_stubbed

Using Factories

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 56

Returns a User instance that's _not_ saved
user = build(:user)

Returns a _saved_ User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Passing a block to any of the methods above will yield the return object
create(:user) do |user|
user.posts.create(attributes_for(:post))

end

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

Attributes

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 57

Lazy attributes
factory :user do
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }

end

Dependent attributes
factory :user do
first_name "Joe"
last_name "Blow"
email { "#{first_name}.#{last_name}@example.com".downcase }

end

override the defined attributes by passing a hash
create(:user, last_name: "Doe").email
=> "joe.doe@example.com"

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

Associations

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 58

factory :post do
If factory name == association name, the factory name can be left out.
author

End

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last_name: "Writely“

End

Builds and saves a User and a Post
post = create(:post)
post.new_record? # => false
post.author.new_record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)
post.new_record? # => true
post.author.new_record? # => false

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

Inheritance

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 59

The title attribute is required for all posts
factory :post do
title "A title"

End

An approved post includes an extra field
factory :approved_post, parent: :post do
approved true

end

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

Sequences for Unique Values

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 60

Defines a new sequence
FactoryGirl.define do
sequence :email do |n|

"person#{n}@example.com"
end

end

generate :email # => "person1@example.com"
generate :email # => "person2@example.com"

Sequences can be used as attributes
factory :user do
email

end

in lazy attribute
factory :invite do
invitee { generate(:email) }

end

In-line sequence for a factory
factory :user do
sequence(:email) {|n| "person#{n}@example.com"}

end

■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

Callbacks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 61

factory_girl makes four callbacks available for injecting code:
■ after(:build)- called after the object is built (via FactoryGirl.build, FactoryGirl.create)
■ before(:create) - called before the object is saved (via FactoryGirl.create)
■ after(:create) - called after the object is saved (via FactoryGirl.create)
■ after(:stub) - called after the object is stubbed (via FactoryGirl.build_stubbed)

Call customize() after the user is built
factory :user do
after(:build) { |user| customize(user) }

end

multiple types of callbacks on the same factory
factory :user do
after(:build) { |user| customize(user) }
after(:create) { |user| customize_further(user) }

end
■ http://www.rubydoc.info/gems/factory_girl/file/GETTING_STARTED.md

■ Faster tests with build_stubbed
□ https://robots.thoughtbot.com/use-factory-girls-build-stubbed-for-a-faster-test

■ Tips and tricks
□ http://arjanvandergaag.nl/blog/factory_girl_tips.html

Factory Girl – Further Reading

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 62

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 63

Isolation of Test Cases

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 64Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

■ Tests should be independent
■ If a bug in a model is introduced

□ Only tests related to this model should fail
■ How to achieve this?

□ Don’t share complex test data
□ Don’t use complex objects

Test Doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 65

■ Generic term for object that stands in for a real object during a test
□ Think “stunt double”

■ Purpose: automated testing

■ Used when
□ Real object is unavailable
□ Real object is difficult to access or trigger
□ Following a strategy to re-create an application state
□ Limiting scope of the test to the object/method currently under test

Verifying Behavior During a Test

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 66

■ Usually: test system state after a test
□ Only the result of a call is tested, intermediate steps are not considered

■ With test doubles: Test system behavior
□ E.g. How often a method is called, in which order, with which parameters

Ruby Test Double Frameworks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17
67

Many frameworks available:
■ RSpec-mocks (http://github.com/rspec/rspec-mocks)

■ Mocha (https://github.com/freerange/mocha)

■ FlexMock (https://github.com/jimweirich/flexmock)

A collection of mocking frameworks (as well as many others):
■ https://www.ruby-toolbox.com/categories/mocking

èWe recommend RSpec-Mocks as it
shares a common syntax with RSpec

Stubs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 68

dbl = double(“user”)
allow(dbl).to receive_messages (:name => “Fred”, :age => 21)
expect (dbl.name).to eq(“Fred”) #this is not really a good test :)
dbl.height #raises error (even if your original object had that property)

■ Method call on the real object does not happen
■ Returns a predefined value if called
■ Strict by default (error when messages received that have not been allowed)

■ Alternatively, if all method calls should succeed: Null object double

dbl = double(“user”).as_null_object
dbl.height # this is ok! Returns itself (dbl)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles

Spies

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 69

dbl = spy("user")
dbl.height
dbl.height
expect(dbl).to have_received(:height).at_least(2).times

■ Stubs with Given-When-Then structure
■ Allows to expect that a message has been received after the message call

■ Alternatively, spy on specific messages of real objects

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

user = User.new
allow(user).to receive(:height) # Given a user
user.measure_size # When I measure the size
expect(user).to have_received(:height) # Then height is called

■ Mocks are Stubs with attitude
■ Demands that mocked methods are called

■ Or as often as desired

■ If test ends with expected calls missing, it fails!

Mocks

70Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17

book = double("book", :title => "The RSpec Book")
expect(book).to receive(:open).once # 'once' is default
book.open # this works
book.open # this fails

user = double("user")
expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level_up).at_least(4).times
expect(user).to receive(:notify).at_most(3).times

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Stub (passive)
■ Returns a predetermined value for a method call

Mock (more aggressive)
■ In addition to stubbing: set a “message expectation”
■ If expectation is not met, i.e. the method is not calledà test failure

Stubs vs. Mocks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17

dbl = double("a user")
allow(dbl).to receive (:name) => { "Fred" }
expect (dbl.name).to eq("Fred") #this is not really a good test :)

dbl = double(“a user”)
expect(dbl).to receive(:name)
dbl.name #without this call the test would fail

è Stubs don‘t fail your tests, mocks can!
71

Partially Stubbing Instances

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 72

s = "a user name" # s.length == 11
allow(s).to receive(:length).and_return(9001)
expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

■ Sometimes you want only part of your object to be stubbed
□ Many methods on object, only expensive ones need

stubbing for a test
■ Extension of a real object in a system that is instrumented

with stub like behaviour
■ “Partial test double” (in RSpec terminology)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

Class Methods

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 73

u = double("a user")
allow(User).to receive(:find) {u} # “User” is a class
expect (User.find(1)).to eq(u) # the class method was stubbed

■ Class methods can also be stubbed
■ Example: Stubbing the User class

□ The database is not touched, a specific instance is returned
□ “find” cannot be verified anymore but tests based on “find” can be isolated
à just test the logic that is under test

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

Multiple Return Values

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 74

die = double("a rigged die")
allow(die).to receive(:roll).and_return(4,5,6) # a better version

puts die.roll # => 4
puts die.roll # => 5
puts die.roll # => 6
puts die.roll # => 6
last value is returned for any subsequent invocations

■ A stub might have to be invoked more than once
■ Return values for each call (in the given order)

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Method Stubs with Parameters

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 75■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments

■ Allow failure when calling stub with wrong parameters
■ Respond differently based on passed parameters

■ A mock / expectation will only be satisfied when called with matching arguments
calc = double("calculator")
allow(calc).to receive(:double).with(4).and_return(8)
expect(calc.double(4)).to eq(8) # this works

■ Calling mock with wrong parameters fails:
dbl = double("spiderman")
anything matches any argument
expect(dbl).to receive(:injury).with(1, anything, /bar/)
dbl.injure(1, 'lightly', 'car') # this fails, "car" does not match /bar/

Raising Errors

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 76

■ A stub can raise an error when it receives a message
■ Allows easier testing of exception handling

dbl = double()
allow(dbl).to receive(:foo).and_raise("boom")
dbl.foo # This will fail with:

Failure/Error: dbl.foo
RuntimeError:
boom

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error

Verifying Doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 77

■ Stricter alternative to normal doubles
■ Check that methods being stubbed are actually present on the underlying

object (if it is available)
■ Verify that provided arguments are supported

by actual method signature

class Post
attr_accessor :title, :author, :body

end

post = instance_double("Post") # reference to the class Post
allow(post).to receive(:title)
allow(post).to receive(:message).with (‘a msg’) # this fails (not defined)

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

■ Using mocks makes (some) tests more concise

Why Use Mocks?

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 78

vs.

digger = Digger.new # a tracked vehicle
initial_left = digger.left_track.position
initial_right = digger.right_track.position
digger.turn_right # run method being tested

expect(digger.left_track.position - initial_left).to eq(+5)
expect(digger.right_track.position - initial_right).to eq(-5)

left_track = double('left_track')
right_track = double('right_track')
digger = Digger.new(left_track, right_track)
left_track.expects(:move).with(+5)
right_track.expects(:move).with(-5)

digger.turn_right # run method being tested

■ Disadvantages
□Mock objects have to accurately model the behaviour of

the object they are mocking
□ Risk to test a value set by a test double (false positives)
□ Possibility to run out of sync with real implementation
à Brittle while refactoring

■ Advantages
□ The test is focused on behavior
□ Speed (e.g. not having to use an expensive database query)
□ Isolation of tests (e.g. failure in model does not affect controller test)

Test Doubles Pro and Contra

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 79

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 80

Levels of Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 81

• Can the program be
deployed?Staging Tests

• Does the program meet
quality standards?Quality Tests

• Do the requirements meet the
users‘ needs?Requirement Tests

• Does the program functionality meet
the requirements?Functional Tests

• Does the program function?Integration
Tests

• Does the code unit function?Unit
Tests

(User Acceptance Tests)

(User Story Acceptance Tests)

Not automatable!

Partially
automatable.

Integration & Acceptance Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 82

Integration Tests

Acceptance Tests

Test Scope

Technology /
Code

Customer /
Business

Unit
Tests

■ Perform tests on the full system, across multiple components
■ Test end-to-end functionality

■ Integration Tests
□ Build on unit tests, written for developers
□ Test component interactions
□ Consider environment changes

(e.g. database instead of volatile memory)

■ Acceptance Tests
□ Check if functionality satisfies the

specification from a user perspective
□ Accessible for the stakeholders

(e.g. using webpage via a browser) ■ http://www.testfeed.co.uk/integration-vs-acceptance-tests/

BDD vs Test Levels

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 83

Use Cases | Features

User Stories | Scenarios

Scenario Steps

Test Cases

Requirement Tests

Functional Tests

Integration Tests

Unit
Tests

Behavior-driven development (BDD)
■ Story-based definition of application behavior
■ Definition of features (feature injection)
■ Driven by business value (outside-in)

Implementations on different abstraction levels:
■ Domain-specific languages (e.g. Cucumber)

□ Pro: Readable by non-technicians
□ Cons: Extra layer of abstraction, translation to Ruby

■ Executable Code (e.g. using testing frameworks, RSpec, Mini::Test)
□ Pro: No translation overhead
□ Con: Barely readable by domain experts

BDD Implementations

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 84

Cucumber Test Framework

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 85

■ Tool for running automated tests written in plain language
■ Allows customers / non-technical stakeholders to read & write tests
■ Provides runnable feature definitions
■ Follows “Given-When-Then” pattern
■ Features are located in features/*.feature

■ Each line is a “step” that is implemented in Ruby
□ e.g. using RSpec and Capybara
□ Located in features/step_definitions/*_steps.rb

■ Interpreted via regular expressions

■ https://cukes.info/
■ https://github.com/cucumber/cucumber/wiki

Cucumber Implementation Example

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 86

Cucumber feature
Feature: Division
In order to allow users to
calculate fractions, the calculator
should perform correct divisions

Scenario: Floating point numbers
Given the calculator is on
When I press 3
And I press /
And I press 2
And I press =
Then I should see 1.5

Steps for the Cucumber 'Division' feature
implemented in Ruby
require 'calculator'

Before do
@calc = Calculator.new

end
Given /the calulator is (on|off)/ do |state|
@calc.power(state)

end
When /I press (.*)/ do |op|
@calc.send(op)

end
Then /I should see (\d+)/ do |result|
expect(@calc.result).to eq(result)

end

features/calculator_division.feature features/step_definitions/division_steps.rb

Scenario: Add a simple author
Given I am on the authors page
When I follow "Add author"
And I fill in the example author
And I press "Add"
Then there should be the example author
And I should be on the authors page

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 87

Cucumber vs. RSpec Example

describe "Author Management" do

example "Add an author" do

visit '/authors/'

click_button 'Add author'

fill_in 'Name', :with => 'Brecht'

click_button 'Add'

expect(page).to have_content 'Brecht'

end

end

Cucumber DSL (no implementation) RSpec (with Capybara)

■ Which one is easier to understand ?
□ By programmers
□ By business stakeholders

■ Which is easier to implement?

■ Which one to choose?
□ In this project?
□ In other projects?

More opinions:
http://www.jackkinsella.ie/2011/09/26/why-bother-with-cucumber-testing.html
http://cukes.info

Discussion

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 88

Capybara Test Framework

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 89

■ Simulate how a real user would interact with a web application
■ Well suited for writing acceptance & integration tests for web applications
■ Provides DSL for “surfing the web”

□ e.g. visit, fill_in, click_button
■ Integrates with RSpec
■ Supports different “drivers”, some support Javascript evaluation

□Webkit browser engine (used in Safari)
□ Selenium

– Opens an actual browser window and performs actions within it

■ https://github.com/jnicklas/capybara#using-capybara-with-rspec

Integration & Acceptance Tests
(with Capybara)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 90

require 'capybara/rspec'

describe "the signin process", :type => :feature do
before :each do

User.make(:email => 'user@example.com', :password => 'password')
end

it "signs me in" do
visit '/sessions/new'
within("#session") do

fill_in 'Email', :with => 'user@example.com'
fill_in 'Password', :with => 'password'

end
click_button 'Sign in'
expect(page).to have_css('div#success')

end
end

■ https://github.com/jnicklas/capybara

Agenda

1. Why Behavior-driven Design (BDD)?
2. Building Blocks of Tests and BDD

■ Model Tests
■ View Tests
■ Controller Tests
■ Setup and Teardown
■ Test Data
■ Test Doubles
■ Integration & Acceptance Tests
■ Specialized Tests

3. Testing Tests & Hints for Successful Test Design
4. Outlook

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 91

https://github.com/hpi-swt2/Ruby-on-Rails-TDD-example

Demo

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 92

■ route_to

■ be_routable

Route Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 93

require "rails_helper"

describe "routes for Widgets", :type => :routing do
it "routes /widgets to the widgets controller" do

expect(get("/widgets")).to route_to("widgets#index")
end

end

require "rails_helper"

describe "routes for Widgets", :type => :routing do
it "does not route to widgets/foo/bar" do

expect(:get => "/widgets/foo/bar").not_to be_routable
end

end

■ http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/routing-specs/route-to-matcher
■ http://www.relishapp.com/rspec/rspec-rails/v/3-2/docs/routing-specs/be-routable-matcher

■ Test E-Mail generation (mock delivery)
□ Validate that application sends mail when expected
□ Validate that email content is what you expect

■ For convenience matchers use email-spec gem
(https://github.com/bmabey/email-spec)

Outgoing Mail Tests

94Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17

describe "POST /signup (#signup)" do
it "should deliver the signup email" do

expect(UserMailer).to receive(:deliver_signup).with("email@example.com", "Jim")
post :signup, "Email" => "email@example.com", "Name" => "Jim"

end
end

RSpec Testing Mail Content and Metadata

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 95

describe "Signup Email" do, :type => :model do
include EmailSpec::Helpers
include EmailSpec::Matchers
include Rails.application.routes.url_helpers

before(:all) do
@email = UserMailer.create_signup("jojo@yahoo.com", "Jojo Binks")

end

it "should be set to be delivered to the email passed in" do
expect(@email).to deliver_to("jojo@yahoo.com")

end

it "should contain the user's message in the mail body" do
expect(@email).to have_body_text(/Jojo Binks/)

end

it "should contain a link to the confirmation link" do
expect(@email).to have_body_text(/#{confirm_account_url}/)

end

it "should have the correct subject" do
expect(@email).to have_subject(/Account confirmation/)

end
end

■ Helper modules are filled with “the rest”
■ Used as mediator between views and models or views and controllers
■ (Complex) view logic is moved to helpers

Testing Helper Modules

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 96

Helper
module UsersHelper do
def display_name(user)

"#{user.first_name} #{user.last_name}"
end

end

Helper test
it "displays a complete user name" do

@user = User.new(:first_name => "Garry", :last_name -> "Meyer")
expect(display_name(@user)).to eq “Garry Meyer”

end

■ Automate testing with Guard (https://github.com/guard/guard-rspec)

□ Automatically launch tests when files are modified
□ Run only the tests related to the change

■ Parallelize tests with Spork (https://github.com/sporkrb/spork-rails)

□ Especially relevant with many time-consuming acceptance tests

Optimizing the Testing Process

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 97

■ Why Behavior-driven Design (BDD)?
■ Building Blocks of Tests and BDD
■ Testing Tests & Hints for Successful Test Design

□ Test Coverage
□ Fault Seeding
□Mutation Testing

■ Outlook

Agenda

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 98

■ Most commonly used metric for evaluating test suite quality

■ Test coverage = executed code during test suite run / all code * 100
■ 85 loc / 100 loc = 85% test coverage

■ Absence of line coverage indicates a potential problem
■ Existence of line coverage means very little
■ In combination with good testing practices, coverage might say

something about test suite reach
■ Circa 100% test coverage is a by-product of BDD

Test Coverage

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 99

■ Most useful approaches
□ Line coverage
□ Branch coverage

■ Tool
□ SimpleCov (https://github.com/colszowka/simplecov)
□Uses line coverage

è 100% line coverage although 1 branch wasn’t executed

How to Measure Coverage?

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 100

if (i > 0); i += 1: else i -= 1 end

SimpleCov

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 101

SimpleCov

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 102

■ Standalone alternative to CodeClimate
■ Methods related to failed tests are marked

https://github.com/colszowka/simplecov

■ Independence
□Of external test data
□Of other tests (or test order)

■ Repeatability
□ Same results each test run
□ Potential Problems

– Date, e.g. Timecop (https://github.com/travisjeffery/timecop)
– Random numbers (try to avoid them or stub the generation)

5 Habits of Highly Successful Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 103

■ Clarity
□ Test purpose should be immediately understandable
□ Tests should be simple, readable
□Make it clear how the test fits into the larger test suite
□Worst case:

□ Better:

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 104

it "sums to 37" do
expect(37).to eq(User.all_total_points)

end

5 Habits of Highly Successful Tests

it "rounds total points to nearest integer" do
User.add_points(32.1)
User.add_points(5.3)
expect(37).to eq(User.all_total_points)

end

■ Conciseness
□Use the minimum amount of

code and objects
□ Clear beats concise
□Writing the minimum required

amount of tests for a feature
à Test suite will be faster

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 105

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

it test_user_point_level
assert_user_level(1,"novice")
assert_user_level(501,"apprentice")
assert_user_level(1001,"journeyman")
assert_user_level(2001,"guru")
assert_user_level(5001,"super jedi rock star")
assert_user_level(0,"novice")
assert_user_level(500,"novice")
assert_user_level(nil,"novice")

end

5 Habits of Highly Successful Tests

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions.pdf

■ If a single call to a model results in many model changes:

□High number of assertions à High clarity and cohesion
□High number of assertions à Low test independence

è Use context & describe and have 1 assertion per test

Conciseness:
How many Assertions per Test?

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 106

■ Robustness
□Underlying code is correct à test passes
□Underlying code is wrong à test fails
□ Example: view testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 107

5 Habits of Highly Successful Tests

describe "the signin process", :type => :feature do
it "signs me in (text version)" do

visit '/dashboard'
expect(page).to have_content “My Projects”

end
version below is more robust against text changes
it "signs me in (css selector version)" do

visit '/dashboard'
expect(page).to have_css "h2#projects"

end
end

■ Robustness
□ Reusable constants instead of magic numbers

□ But be aware of tests that always pass regardless of underlying logic

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 108

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

def test_user_point_level
assert_user_level(User::NOVICE_BOUND + 1, "novice")
assert_user_level(User::APPRENTICE_BOUND + 1, "apprentice")
...

end

5 Habits of Highly Successful Tests

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Troubleshooting

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 109

■ Reproduce the error
□Write a test

■ What has changed?
□ Isolate commit/change that causes failure

■ Isolate the failure
□ thing.inspect

□ Add assertions/prints to your test
□ Rails.logger.error
□ save_and_open_page

(Capybara method to take a snapshot of a page)
■ Explain to someone else

□ Rubber duck debugging

http://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg

Manual Fault Seeding

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 110

■ Conscious introduction of faults into the program
■ Run tests
■ Minimum 1 test should fail

If no test fails, then a test is missing
■ Possible even with 100% line coverage
■ Asserts functionality coverage

Mutant: Modified version of the program with small change
■ Tests correctly cover codeà Test should notice change and fail

Mutation Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 111

if month > 12 then
year += month / 12
month = month % 12

end
Tests pass for

Tests fail for

Test
Cases

mutate

Program
Source

Mutants

if not month > 13 then
year -= month / 12
month = month % 12

end

next_month:

■ Mutation Coverage: How many mutants did not cause a test to fail?
Asserts functionality & behavior coverage
□ For Ruby: Mutant (https://github.com/mbj/mutant)

Summary

BDD
■ Motivation
■ BDD Cycle

TDD
■ Pros & Cons

Automated Testing
■ Model/View/Controller
■ Test Data
■ Test Doubles

Testing Hierarchy
■ Integration Tests
■ Acceptance Tests

Test Quality
■ Coverage
■ Mutation Tests

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 112

Further Reading

http://betterspecs.org – Collaborative RSpec best practices documentation effort

Everyday Rails Testing with RSpec by Aaron Sumner, leanpub
The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends
by David Chelimsky et al.
Rails 4 Test Prescriptions: Build a Healthy Codebase by Noel Rappin, Pragmatic
Programmers 2014

Quizzes
http://www.codequizzes.com/rails-test-driven-development/controller-specs
http://www.codequizzes.com/rails-test-driven-development/model-specs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 113

■ Retrospective Sprint #1
■ Code Review Techniques
■ Scrum Tips & Tricks
■ Deployment

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II — WS 2016/17 114

Outlook (Dec 4, 1st slot)

