
Software Reviews

Arian Treffer
arian.treffer@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts

Software Engineering II
WS 2016/17



Review Techniques

“[Formal or informal] meeting during which a software product is
[examined by] project personnel, managers, users, customers, user
representatives, or other interested parties for comment or approval”
[IEEE1028]
■ People-intensive approach instead of using tools

Code Reviews — Software Engeneering II — WS 2016/17 2



■ Assure that software fulfills the requirements
■ Faults are covered as early as possible
■ Projects gets more manageable by identifying new risks
■ Improvement of communication
■ Further education of participants
■ Software gets more visible

Why Reviews?

Code Reviews — Software Engeneering II — WS 2016/17 3

[Giese]



Involved Roles

Code Reviews — Software Engeneering II — WS 2016/17 4

[http://community.acs.org/journals/acbcct/cs/Portals/0/wiki/PeerReview.jpg]



Manager
■ Assessment is an important task for manager
■ But: Lack of technical understanding
■ But: Assessment of a product vs. assessment of a person
èOutsider in review process, but should support with resources

(time, staff, rooms, …)

Developer
■ Should not justify but only explain their results
■ No boss should take part at review

Involved Roles

Code Reviews — Software Engeneering II — WS 2016/17 5

[Giese]



Review team

Team leader
■ Responsible for quality of review
■ Technical, personal and administrative competence
■ Moderation of review meetings

Reviewer
■ Study the material before first meeting
■ Don’t try to achieve personal targets!
■ Gives positive and negative comments on review artifacts

□ Not on the author!
Recorder
■ Any reviewer, can rotate even in review meeting
■ Protocol as basis for final review document

Code Reviews — Software Engeneering II — WS 2016/17 6

[Giese]



Task of Review Team

Deliver a good review
■ “Don’t shoot the messenger”
■ Find problems, but don’t try to solve them

Artifact of interest should be assessed
■ Accepted, partly accepted, needs corrections, rejected
■ Acceptance only possible if no participant speaks against it

Problems should be clearly identified/ extracted

Code Reviews — Software Engeneering II — WS 2016/17 7

[Giese]



Review Team Building

Team members: In general staff with personal interest in a good result
Review as basis for management decisions
Potential members
■ Representative of team which build artifact (not the author!)
■ Representative of customer
■ Representative of team which will use the artifact
■ Representative of QA unit
■ Experienced staff or outsiders to ensure objectivity

3-6 members (with some extra viewers)

Code Reviews — Software Engeneering II — WS 2016/17 8

[Giese]



Management Reviews

“The purpose of a management review is to monitor progress, determine
the status of plans and schedules, confirm requirements and their system
allocation, or evaluate the effectiveness of management approaches used
to achieve fitness for purpose” [IEEE1028-97]
■ Support decisions about changes and corrective actions that are

required during a software project
■ Determine the adequacy of plans, schedules, and requirements and

monitor their progress or inconsistencies

Code Reviews — Software Engeneering II — WS 2016/17 9



Technical Reviews

“The purpose of a technical review is to evaluate a software product to
determine its suitability for its intended use. The objective is to identify
discrepancies from approved specifications and standards. The results
should provide management with evidence confirming (or not) that the
product meets the specifications and adheres to standards, and that
changes are controlled” [IEEE1028-97]
■ Roles: a decision-maker, a review leader, a recorder, and technical staff

to support the review activities
■ Inputs: Statement of objectives, a specific software product, the

specific project management plan, the issues list associated with this
product, the technical review procedure

Code Reviews — Software Engeneering II — WS 2016/17 10



Inspections

“The purpose of an inspection is to detect and identify software product
anomalies” [IEEE1028-97]
■ Team members checks the material/ artifacts independently
■ Consolidation of results in meeting of team members and developer
■ Focus on important parts of software
■ Meetings gets more structured/ shorter, but much preparation time for

each team member

Code Reviews — Software Engeneering II — WS 2016/17 11



Inspections – Process and Roles

Code Reviews — Software Engeneering II — WS 2016/17 12



Walk-Throughs

“The purpose of a walk-through is to evaluate a software product. A walk-
through may be conducted for the purpose of educating an audience
regarding a software product.” [IEEE1028-97]
■ Similar to inspection but typically less formally
■ Organized by developer/ software engineer for reviewing his own work
■ Bigger audience can participate at meeting (e.g. for education

purposes)
■ Few preparation for team members

Code Reviews — Software Engeneering II — WS 2016/17 13



Walk-Throughs

Code Reviews — Software Engeneering II — WS 2016/17 14



What to Review?

Should be reviewed Don’t have to be reviewed
Parts with complicated algorithms Trivial parts where no complications are

expected
Critical parts where faults could have bad
effects

Parts which won’t break the functionality
if faults occur

Parts using new technologies/
environment/ …

Parts which are similar to some which has
been reviewed in previous meetings

Parts which has been constructed by
inexperienced team members

Reused or redundant parts

Code Reviews — Software Engeneering II — WS 2016/17 15

[Galin2004]



Comparison of Review and
Audit Types

Code Reviews — Software Engeneering II — WS 2016/17 16

[Giese, 2012]



Code Review Tools

Gerrit: https://code.google.com/p/gerrit/
■ Integrated with Github: http://gerrithub.io
■ Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.

Review Ninja: http://review.ninja
■ Github integration

FishEye: https://www.atlassian.com/software/fisheye/overview
■ Visualize, Review, and organize code changes

Code Reviews — Software Engeneering II — WS 2016/17 17



■ Reviews are very effective and efficient techniques
■ “Low tech” (without tools)
■Unfortunately, in practice, these techniques aren’t widely-used!

Conclusion

Code Reviews — Software Engeneering II — WS 2016/17 18



Tools that might help…

■ Measured code complexity with Flog
■ http://ruby.sadi.st/Flog.html

■ Example input class and report

Code Reviews — Software Engeneering II — WS 2016/17 19

Test#blah: (11.2)
6.0: eval
1.2: branch
1.2: ==
1.2: puts
1.2: assignment
0.4: lit_fixnum

“Flog shows you the most torturous code you wrote. The more painful
the code, the higher the score.”



Tools that might help (2/2)

Find painful parts:
■ Flay (structual similarities, https://rubygems.org/gems/flay)
■ Reek (code smells, https://github.com/troessner/reek)
■ Cane (code quality, https://github.com/square/cane)
■ …
■ Metric_fu (combines the above,

https://github.com/metricfu/metric_fu/)
■ Rails_best_practices (Rails specific,

https://github.com/flyerhzm/rails_best_practices)
Find slow parts of your code/tests:
■ rake spec SPEC_OPTS=“--profile”
■ Show 10 slowest examples from your test suite

Code Reviews — Software Engeneering II — WS 2016/17 20



Further Reading

http://guides.rubyonrails.org

http://rails-bestpractices.com/

Code Reviews — Software Engeneering II — WS 2016/17 21


