
Tips and Tricks

Arian Treffer
arian.treffer@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts

Software Engineering II
WS 2016/17



Agenda

1. Value-based Requirements Analysis
2. Organizing your Project
3. Git Tricks
4. Outlook

December 12,
2016Tips & Tricks — Software Engineering II — WS 2016/17 2



Value-based Requirements Analysis

■ Requirements are often analyzed in a value-neutral environment
[Boehm, Barry W. "Value-based software engineering: Overview and agenda." 2006]

■ 80% of the value is expressed in 20% of the requirements (Pareto principle)
[Koch, 1998]

■ A value-oriented approach is more appropriate
■ How to do that?

□ Identify the system's success-critical stakeholders
□ Obtain their value propositions with respect to the system
□ Estimate / find out value of a requirement to the stakeholders
□ Estimate effort to implement a requirement

Tips & Tricks — Software Engineering II — WS 2016/17 3



Value-based Requirements Analysis

Tips & Tricks — Software Engineering II — WS 2016/17 4

Rules:
■ Implement: Above 2x
■ Skip: Below 1/2x
■ In-between: Review

■ Whole truth?
■ Beware of dependencies!



Minimum Viable Product
The minimal set of features that can be useful.

Advantages
■ Earlier, better user feedback

□ But can’t replace rapid prototyping
■ Move faster into production

□ Software is developed for a reason
■ Project can no longer fail entirely

Challenges
■ Requires “product” quality early on

□ No time for “and now we fix the bugs” (should not happen, anyway)
□ Also consider usability, deployment, support, marketing

■ Requires smart requirement management
□ But also makes requirement management easier

Tips & Tricks — Software Engineering II — WS 2016/17 5



Agenda

1. Value-based Requirements Analysis
2. Organizing your Project

■ Scrum Burn-Down Chart
■ Communication
■ Dealing with Dependencies
■ Estimating Large Backlogs
■ Beyond Scrum

3. Git Tricks
4. Outlook

December 12,
2016Tips & Tricks — Software Engineering II — WS 2016/17 6



Organizing your Project
Questions:
■ Which stories are part of Sprint#1?
■ Who is working on which tasks?
■ Which version is a good one that can be shown to the customer?

Tools that might help:
■ Put your user stories & tasks into Github's issue tracker

□ Assign issues to developers
□ Use milestones to assign user stories to sprints
□ Use issue tags, e.g. to denote responsible teams or status
□ Use "project management" tools that give an overview of GH issues,

e.g. https://waffle.io/ or https://www.zenhub.io/
■ Tag versions that can be presented

Tips & Tricks — Software Engineering II — WS 2016/17 7
$ git tag –a v0.1 –m 'version after Sprint#1 without US #2'



Scrum Burn-Down Chart

■ Graphical representation of work left to do versus time
■ X-Axis: sprint timeline, e.g. 10 days
■ Y-Axis: work that needs to be completed in sprint (time or story points)
■ "Ideal" work remaining line: straight line from start to end
■ Actual work remaing line

□ above idealà behind schedule, below idealà ahead schedule
Tips & Tricks — Software Engineering II — WS 2016/17 8Image: I8abug (CC BY-SA 3.0)



Scrum Boards – Virtual vs. Real-Life

Tips & Tricks — Software Engineering II — WS 2016/17 9



■…?

How do I know when to stop?
■ Acceptance criteria fulfilled
■ All tests are green
■ Code looks good
■ Objective quality goals
■ Second opinion
■ Internationalization
■ Security
■ Documentation

The Definition of Done is the team’s consensus of what it takes to
complete a feature.

Definition of Done

Tips & Tricks — Software Engineering II — WS 2016/17 10December 12,
2016



Communication

Questions:
■ How do we communicate in and between teams?
■ How do I find out about architecture changes?
■ How do I know how to use other people's code?

Tools that might help:
■ Github wiki to (briefly!) document how to use components
■ Code comments explaining the larger context, common pitfalls
■ One(!) common communication channel for announcing changes,

e.g. E-Mail list, IRC, IM, Slack, Google Hangouts, Facebook group

Tips & Tricks — Software Engineering II — WS 2016/17 11Image: Abstruse Goose (CC BY-NC 3.0 US)



Dealing with Dependencies
Ambassadors

■ Mutual Exchange of team members
□ Improves efficiency of communications
□ Allows deeper understanding of problems
□ Prevents coordination problems early in the process

■ Ambassadors should be fully integrated team members
■ Especially useful for API development, design, etc.

Tips & Tricks — Software Engineering II — WS 2016/17 12[Pichler, Scrum – Agiles Projektmanagement erfolgreich einsetzen, 2007]



Estimating Large Backlogs (1/2)

Bucket Estimation (Jukka Lindström) [Scrumcenter, 2009]
■ Create physical buckets based on examples (2-3 per bucket)
■ Assign items to buckets one by one through

□ Comparing & discussing
□ Planning Poker

Tips & Tricks — Software Engineering II — WS 2016/17 13



Estimating Large Backlogs (2/2)

Affinity Estimation (Lowell Lindstrom) [Scrumcenter, 2009]
■ Read each story to the entire team
■ Arrange stories horizontally based on size (no talking!)
■ Place Fibonacci numbers above the list
■ Move each story to the preferred number

Tips & Tricks — Software Engineering II — WS 2016/17 14



Beyond scrum

Tips & Tricks — Software Engineering II — WS 2016/17 15

Scrum critique:
■ Scrum and agile are by no means universally accepted as "the way" to do

software engineering (“Agile Hangover”)
■ Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/
□ Business-driven engineering — Scrum increases the feedback frequency while

giving engineers no real power
□ Terminal juniority — Architecture and R&D and product development aren’t

part of the programmer’s job
□ It’s stupidly, dangerously short-term — engineers are rewarded or punished

solely based on the completion, or not, of the current two-week “sprint”



Agenda

1. Value-based Requirements Analysis
2. Organizing your Project
3. Git Tricks
4. Outlook

December 12,
2016Tips & Tricks — Software Engineering II — WS 2016/17 16



Git Tricks — amend, interactive staging

Tips & Tricks — Software Engineering II — WS 2016/17 17

$ git commit --amend -m "new message"

Change commit message of previous commit
(Careful, don't do this if you already pushed the commit)

git add [missing files]$ git add [missing files]
$ git commit --amend  #uses the previous commit's message

Forgot to commit files?

git reset --soft HEAD@{1}$ git reset --soft HEAD@{1}
$ git commit -C HEAD@{1}

Undo the amending

Interactive staging (also allows committing only parts of files)
$ git add -i
$ git add --patch [file]



Tips & Tricks — Software Engineering II — WS 2016/17 18

$ git stash
$ git stash pop

Temporarily store/retrieve all modified tracked files

$ git stash list
List all stashed changesets

What did I  work on recently?
Show differences that are not staged yet
$ git diff

Shows differences between staging and the last file version
$ git diff --staged

Git Tricks — reflog, diff, stash

$ git reflog
Log of all recent actions



Tips & Tricks — Software Engineering II — WS 2016/17 19

$ git log --abbrev-commit --pretty=oneline

Show changesets in the log

Shorter version of the git log

$ git log -p

Show pretty graph of git history
$ git log --graph --decorate --pretty=oneline --abbrev-commit

$ git rebase <branch>
History is becoming cluttered with merge commits

Git Tricks — log, blame, rebase

$ git blame --date=short [file]
Show what revision and author last modified each line



Git Rebase — setup

Tips & Tricks — Software Engineering II — WS 2016/17 20

■ Created "experiment" branch
to try something out

■ Easiest way to integrate the branches is merge
□ Will create merge commits

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)

$ git checkout master
$ git merge experiment

$ git checkout –b "experiment"
$ git commit –a –m "C3"



Git Rebase — execution

Tips & Tricks — Software Engineering II — WS 2016/17 21

■ git rebase
□ Take all the changes that were committed on

one branch and replay them on another one
□ Only do this with local commits

$ git checkout experiment
$ git rebase master

■ Afterwards: fast-forward the master branch
□ No merge commits

$ git checkout  master
$ git merge experiment

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)



Git cherry-pick

Tips & Tricks — Software Engineering II — WS 2016/17 22

■ Problem: Quickly get changes from other commits
without having to merge entire branches

■ git cherry-pick
□ apply the changes introduced

by existing commits

$ git checkout master
$ git log --abbrev-commit --pretty=oneline
d7ef34a  C3: Implement feature
0be778a C4: critical change introduced

C0 C1 C2

CA

C3

CB

C4 C5

C4

critical
change master

experiment

$ git checkout experiment
$ git cherry-pick 0be778a

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)



Git Self-help Resources

Tips & Tricks — Software Engineering II — WS 2016/17 23

■ How to undo (almost) anything with git – guide by Github
□ https://github.com/blog/2019-how-to-undo-almost-anything-with-git one

■ Git cheat sheet – by Github
□ https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

■ Git FAQ – answers to common questions
□ http://gitfaq.org/
□ https://git.wiki.kernel.org/index.php/Git_FAQ

■ Git pretty – troubleshooting flowchart
□ http://justinhileman.info/article/git-pretty/



Tooling suggestions

Tips & Tricks — Software Engineering II — WS 2016/17 24

■ Many GUIs for git available (https://git-scm.com/downloads/guis)

□ Make some complex git interactions much simpler
□ Draw pretty commit graphs, overviews of branches and merges
□ GitX, TortoiseGit, SourceTree, Tower, SmartGit, gitg, git-cola

■ Github Integration
□ Github also provides git tools

https://mac.github.com/, https://windows.github.com/

■ Git extras (https://github.com/tj/git-extras)
■ Common git commands bundled



■ http://nvie.com/posts/a-successful-git-branching-model/

■ Never merge in master or release branches
■ Never break build in shared branches

Branching

December 12,
2016Git — Software Engineering II — WS 2015/16 25



Agenda

1. Value-based Requirements Analysis
2. Organizing your Project
3. Git Tricks
4. Outlook

December 12,
2016Tips & Tricks — Software Engineering II — WS 2016/17 26



Outlook

Dec 18
■ Present your intermediate results

Jan 15 & 22
■ Guest lectures

Tips & Tricks — Software Engineering II — WS 2016/17 27Image Slide 1: Steven Depolo (CC BY 2.0)


