


“[Formal or informal] meeting during which a software product is 

[examined by] project personnel, managers, users, customers, user 

representatives, or other interested parties for comment or approval” 

[IEEE1028]

■ Generate comments on software

■ Several sets of eyes check

■ People instead of using tools



■ Improve code

■ Discuss alternative solutions

■ Transfer knowledge

■ Find defects

[Bacchelli ‘13]



Manager

■ Assessment is an important task for manager

■ But: Lack of technical understanding

■ But: Assessment of a product vs. assessment of a person

Outsider in review process, but should support with resources 

(time, staff, rooms, …)

Developer

■ Should not justify but only explain their results

■ No boss should take part at review

[Giese]



Team leader

■ Responsible for quality of review

■ Technical, personal and administrative competence 

■ Moderation of review meetings

Reviewer

■ Study the material before first meeting

■ Don’t try to achieve personal targets!

■ Gives positive and negative comments on review artifacts

□ Not on the author!

Recorder

■ Any reviewer, can rotate even in review meeting

■ Protocol as basis for final review document

[Giese]



Deliver a good review

■ “Don’t shoot the messenger”

■ Find problems, but don’t try to solve them

Artifact of interest should be assessed

■ Accepted, partly accepted, needs corrections, rejected

■ Acceptance only possible if no participant speaks against it

Problems should be clearly identified / extracted

[Giese]



Management Review

■ Monitor progress and status of plans, confirm requirements

■ Evaluate effectiveness of management approaches / corrective actions

Technical Review

■ Evaluate entire software on suitability for intended use

■ Provide evidence whether software product meets specifications



Inspections

■ Identify software product anomalies, invented at IBM in the 1970’s

■ Formal process, can involve hard copies of the code and documents

■ Review team members check important artifacts independently, 

consolidation meeting with developers

■ Preparation time for team members, shorter meetings

Walk-through

■ Evaluate software, focus on educating an audience

■ Organized by developer for reviewing own work

■ Bigger audience can participate, little preparation for team members



Should be reviewed Might not have to be reviewed

Parts with complicated algorithms Trivial parts where no complications are 
expected

Critical parts where faults lead to system 
failure

Parts which won’t break the functionality if 
faults occur 

Parts using new technologies / 
environment / …

Parts which are similar to those previously 
reviewed

Parts constructed by inexperienced team 
members

Reused or redundant parts

[Galin2004]



[Giese, 2012]



■ Follows more lightweight, flexible process

■ Change sizes are smaller

■ Performed regularly and quickly,

mainly just before code committed to main branch

■ Shift from defect finding to group problem solving activity

■ Prefer discussion and fixing code over reporting defects

[Rigby’13]
[Bacchelli‘13]



■ Code review coverage and review participation share

significant link with software quality

■ Most comments concern code improvements,

understandability, social communication

■ Only ~15% of comments indicate possible defect

■ Developers spend approximately five hours per week 

(10-15% of their time) in code reviews

[Bosu’17]
[McIntosh’14]
[Bacchelli ‘13]



[Bacchelli ‘13]

[Bosu’17]

Expectations Outcomes

Expectations 
4 years later

Maintainability and code improvements 
identified as most important aspects of 
modern code reviews



■ Delay the use of implemented features

■ Forces the reviewers to switch context away from their current work

■ Offer little feedback for legacy code

■ Overloading (too many files),

developers create large patches

■ Overcrowding (too many reviewers),

assigning too many reviewers may

lower review quality



■ Review after committing to VCS (e.g. using pull requests)

■ Used by most of projects on GitHub and BitBucket

■ Developers can commit continuously

■ Other team members see code 

changes and can adapt their work

■ Flexible definition of the code to be 

reviewed (set of commits, whole 

branch, some files)

■ Chance of unreviewed code in main repository

■ Requires branches to work effectively

■ May take a while for developers to come back 

to the code and improvement ideas

+ –

https://www.devart.com/review-assistant/learnmore/pre-commit-vs-post-commit.html



■ Review before committing to the version control 

(e.g. using mailing lists / Gerrit, Crucible tools)

■ Used by Linux Kernel, Git, Microsoft, Google, and Facebook

■ Ensures review was performed

■ Code quality standards met before 

commit

■ No repository access for reviews

■ Other developers not affected by 

found bugs

■ Decreased productivity due to overhead

□ Further work on submitted code not 

possible until review done

■ Review and commit are not tightly coupled

+ –



■ Usually, two reviewers find an optimal number of 

defects. 

■ People who contributed changes (find defects)

■ New developers (transfer knowledge)

■ Team members with a small review queue

■ Reviewers with different fields of expertise

■ Let reviewers know what they should look out for

[Rigby’13]



http://atlassianblog.wpengine.com/developer/assets_c/2011/07/mt-perloc-thumb-500x263-7290.png

■ "Ask a programmer to review 10 lines of code, he'll find 10 issues.

Ask him to do 500 lines and he'll say it looks good." - Giray Özil

■ Semantically coherent set of changes easier to review than interleaved concerns



Microsoft

■ Median completion times: 14.7h (Bing), 18.9h (Office), 19.8h (SQL Server)

■ Median number of reviewers: 3-4

■ Developers spend 4-6 hours per week on reviews

Google

■ Mandatory review of every change 

■ Median completion times: 15.7h (Chrome), 20.8h (Android)

■ Median patch size: 78 lines (Chrome), 44 lines (Android)

■ Median number of reviewers: 2

[Rigby’13]



Gerrit (https://code.google.com/p/gerrit/ )

■ Integrated with Github: http://gerrithub.io

■ Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.

■ Plug-ins available (e.g. EGerrit for Eclipse)

Review Ninja (http://review.ninja)

■ Github integration

FishEye (https://www.atlassian.com/software/fisheye/overview)

■ Visualize, Review, and organize code changes

https://code.google.com/p/gerrit/
http://gerrithub.io
http://review.ninja/
https://www.atlassian.com/software/fisheye/overview


■ Testing checks code function via dynamic analysis

■ Code reviews manually check code quality via static analysis

Automated static analysis (linters) can help as well

■ SimpleCov (code coverage, https://github.com/colszowka/simplecov)

■ Flog (code complexity, http://ruby.sadi.st/Flog.html)

■ Reek (code smells, https://github.com/troessner/reek)

■ Cane (code quality, https://github.com/square/cane)

■ Rails_best_practices (Rails specific, https://github.com/flyerhzm/rails_best_practices)

https://github.com/colszowka/simplecov
http://ruby.sadi.st/Flog.html
https://github.com/troessner/reek
https://github.com/square/cane
https://github.com/flyerhzm/rails_best_practices


■ Reviews are not a new thing, good reasons to do them

■ Different types of review techniques

□Management Review

□ Technical Review

□ Inspection

□Walk-through

□Modern / contemporary code reviews

■Method to find faults and improvement opportunities

early in the process





Should `super` be there or not?

■ If yes, test it!

Better

■ Don’t override Rails core methods

■ Use proper i18n





before(:each)





Parameters don’t match params

Business logic vs controller logic

■ chair.add_wimi

■ chair_application.accept!





Re-implements Active Record Validation Logic

Hard to test

Solution:

■ xyz = Lead.new({:first_name => first_name, :last_name => …})

■ xyz.valid? => false





■ Re-implements Active Record Association Logic

■ Solution:

□ belongs_to :seller





■ Re-implements Active Record Finder Logic

■ Major performance issue

■ Violates Ruby coding conventions

■ Solution:

□ SupportTicket.find_all_by_closed(true)

□ SupportTicket.where(:closed => true)





Code is error prone

Violates ruby coding conventions

■ Camelcase methods

■ Indentations

■ Superfluous instance variable assignments

Solution:

■ Test with uncommon values (“D”)

■ Suggestion: Move it somewhere else -> Customer?





Self-explanatory method and variable names?

Indent?

Solution:

■ Why not use ruby standard functionality

■ return s.nil? ? “” : s





Solution:

■ Do something with the customer



[Bosu’17] Bosu, Amiangshu, et al. "Process Aspects and Social Dynamics of 

Contemporary Code Review: Insights from Open Source Development and 

Industrial Practice at Microsoft." TSE 43.1 (2017): 56-75.

[McIntosh’14] McIntosh, Shane, et al. "The impact of code review coverage and 

code review participation on software quality: A case study of the qt, vtk, and 

itk projects." MSR’14.

[Rigby’13] Rigby, Peter C., and Christian Bird. "Convergent contemporary 

software peer review practices." FSE’13.

[Bacchelli‘13] Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes,

and challenges of modern code review." ICSE’13.

[Feitelson‘13] Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck. 

"Development and deployment at facebook." IEEE Internet Computing 17.4 

(2013): 8-17.



■ "ScientificReview" by Center for Scientific Review

Licensed under Public Domain via Wikimedia Commons

http://commons.wikimedia.org/wiki/File:ScientificReview.jpg

■ "WTF per Minute" by Glen Lipka

http://commadot.com/wtf-per-minute/

■ "The Dark Side of Infrastructure as Code" by Lori Macvittie

https://devops.com/dark-side-infrastructure-code/

■ Geek & Poke

http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-

review.html

http://commons.wikimedia.org/wiki/File:ScientificReview.jpg#/media/File:ScientificReview.jpg
http://commadot.com/wtf-per-minute/
https://devops.com/dark-side-infrastructure-code/
http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-review.html

