Hasso
Plattner
Institut

IT Systems Engineering | Universitdt Potsdam

Miscellaneous

Christoph Matthies (christoph.matthies@hpi.de)

Software Engineering |l
WS 2017/18 Enterprise Platform and Integration Concepts

Pre- and Post-Commit Reviews

m Two different concepts of when to do reviews
0 Conceptually before or after change is in the repository
O Repository can be varied
— Git, Mercurial, Perforce, Bazaar
— Stack of papers
0 Pre-commit the more controlling approach
— Suitable for trunk-based development

m Pull Requests and PR comments are implementation of post-commit reviews
0 Depending on specifics of implementation concepts can have similarities

Application Deployment — Software Engineering Il — WS 2017/18

Introductory Exercise

Everyone passed \o/

m Good job!

m Pretty young idea

m Keeps evolving (e.g. using GitHub classroom)

m Thanks for giving us feedback, helps us improve the exercise

Application Deployment — Software Engineering Il — WS 2017/18

Code(Climate & Code

Should be possible to dismiss issues
m You are all admins of the repo
and have all of the rights
m Might help to add the
repository to CC:
codeclimate.com/oss/dashboard
m If dismissing a lot of issues,
change config
m Do not let the linters slow you down!

m Ask if you need any credentials!

Application Deployment — Software Engineering Il — WS 2017/18

Linters

https://codeclimate.com/oss/dashboard

AN Open source

PUEBLIC

Open source

) Add a repository

W

Repositories

sport-portal

Last activity 35 minutes ago

workshop-portal

Last activity 3 days ago

Hasso
Plattner
Institut

IT Systems Engineering | Universitdt Potsdam

Christoph Matthies (christoph.matthies@hpi.de)
Arian Treffer (arian.treffer@hpi.de)

Software Engineering |l
WS 2017/18 Enterprise Platform and Integration Concepts

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

Development vs. Operations

I
QDEVA Development * Operations
I
<l
B,

Development
Working Copy

@Users

<P
<> Hﬂ
Repository
All Code Production

Current Release

:
Biluils,

Devel

Working Copy 5 code [Development Data
Dev B “ Build @ Test Data

. Production Data

Application Deployment — Software Engineering Il — WS 2017/18

Development & Operations

Problems

m Software needs to be operated
0 Developers vs. Admins

m Short deployment cycles

m Maintain quality standards

DevOps
m Formalized process for deployment

m Focus on communication, collaboration,

and integration between Dev and Ops

Application Deployment — Software Engineering Il — WS 2017/18

2@y

Customer

Devs

“Agile for deployment”

Gl

Admins

Not DevOps

Bos
B,

Development
Working Copy

<[>

Repository
All Code

Development ® Operations

@Use rs

7 o
> H’ﬂ
Production
Current Release

Development

J
(AP
g Working Copy

Dev B

Application Deployment — Software Engineering Il — WS 2017/18

5 code [Development Data

“ Build @ Test Data
B Production Data

Terminology

Release

m Planned state of the application

m Set of requirements

m Examples
0 Next big version with new shiny features
0 Urgent hotfix
0 Anything in-between

Version

m Could be anything
m A release has a version number

Application Deployment — Software Engineering Il — WS 2017/18

10

Terminology

Build
m Attempt to implement a release
0 Snapshot of application
m Often the output of the build tool
0 Not: the build script/tool/process
m Version number is
“<Release Number>.<Build Number>"

Application Deployment — Software Engineering Il — WS 2017/18

11

Terminology

Environment
m A system on which the application
can be deployed and used

To promote
m To deploy a build on the next environment

To release

m To promote a build to production
m Thereby finishing the release

Application Deployment — Software Engineering Il — WS 2017/18

12

Overview of Environments

Development Operations
managed by developers managed by admins
Development Staging

m Where the developers work m Clone of production system
m One per developer (if possible) m Final rehearsal

Integration Production

m Runs all tests m The live system

m A try-out version m Failures are expensive here

Quality Assurance
m Professional manual testing

Application Deployment — Software Engineering Il — WS 2017/18

13

Example

4 Release 3.7

—-— e . e . e . oy,

Integration Quality Assurance Staging

_

(o) (o) L000

—-— e . e . e . oy,

Production

Application Deployment — Software Engineering Il — WS 2017/18

14

Example

_ Developers
Build 8 changing Code
4 Release 3.7
[Build 7] [Build 5] [Build 5
Integration Quality Assurance Staging " Production il

_

Application Deployment — Software Engineering Il — WS 2017/18

15

Workflow

Define Release

Application Deployment — Software Engineering Il — WS 2017/18

Reject

Change Code

Assemble Build

Promote & Test

Accept

16

DevOps

Dev A

Development ® Operations
=,
@ Hﬂ Project Team/ Quality o Admine
Development Project Lead Assurance
Working Copy 0
x| [0 |~ DB~ !—> Y8 |98

Repository

All Code Integration Quality Assurance Staging Production
Latest Build Latest Build/ Current Release/ Current Release
Release Candidate w Release Candidate

@u@ |

Development

Working Copy 5 code [Development Data
Dev B %) Build i Test Data

B Production Data

Application Deployment — Software Engineering Il — WS 2017/18

Implications

Builds are immutable
m |f changed, previous testing was pointless
=» Even the smallest change has to go through all environments

Many systems required

m Each environment has to be maintained
m Automation?

+ Remainder of this lecture
Deployment overhead

m Manual steps are potential for human failure
m Automation?

Application Deployment — Software Engineering Il — WS 2017/18 1 8

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

19

Application Hosting Options

Choice of hosting options is driven by a variety of parameters
m Initial setup effort, cost, and required expertise

m Operational costs and effort

m Targeted service level agreements (SLAs)

m Legal considerations (data privacy, liability, etc.)

Low Effort High Effort
Little Control High Control

PaaS IEEN Dedicqted
Hosting

Application Deployment — Software Engineering Il — WS 2017/18

Own

Datacenter

20

Platform as a Service (Paas) L

Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages

m Minimal effort and knowledge required for setup

m Only platform development knowledge (e.g. Python, Ruby) needed,
no need for hardware / OS maintenance

m Possibility to scale up quickly and easily

Disadvantages

m Usually fixed environment with little variation points

m Provider SLA targets might differ from yours, e.g. downtime, response times
m Limited technical support

Examples: Heroku, Azure Compute, Google App Engine

Application Deployment — Software Engineering Il — WS 2017/18

21

Infrastructure as a Service (laaS) L

Providers deliver virtual private servers (VPS) with requested configuration
Setup of execution environment, database servers, etc. is up to customers

Advantages

m Flexibility regarding execution environment
m Avoid management of underlying hardware
m Dynamic on-demand scaling of resources

Disadvantages
m Server administration know-how and efforts required
m It’s still a VM: Potential performance drops, Disk |/0O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean

Application Deployment — Software Engineering Il — WS 2017/18 2 2

Dedicated Hosting

Providers allocate dedicated hardware, classical approach

Advantages

m Complete control over server, down to bare metal, full power always available
m No virtualization-related performance issues

m More control over network configuration

m Dedicated SLAs

Disadvantages (compared to laas)
m No easy scaling of resources
m Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe

Application Deployment — Software Engineering Il — WS 2017/18

23

Own datacenter

You host your own servers

Advantages

m Complete control over data, security, operations, network etc.

m Custom designed servers possible
m Add cabinets in available space with low cost

Disadvantages
m Huge upfront costs, e.g. space, cooling, fiber, hardware
m Expanding the space of the datacenter is expensive

m Provide around the clock support, monitoring, personnel, etc.

m Not feasible for small companies

Examples: Google, Facebook
Application Deployment — Software Engineering Il — WS 2017/18

24

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
m Virtualization
m Provisioning
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

25

Setting up an Environment

Main challenges in preparing infrastructure:

m Minimize the effort required to repeatedly
setup identical execution environments

m Without relying on “administration gurus”

Solutions:

m DevOps, i.e. a strong collaboration between
the development and the operations team

m A strong bias towards automation

Application Deployment — Software Engineering Il — WS 2017/18

26

Where to Start With "Deploying”?

m Hosted solutions aren't always feasible for initial experiments

m Maintaining local installs of server stacks in different versions can get
cumbersome (e.g. XAMPP, WAMP, LAMP)

m Development vs. production environment differences
result in "it works on my machine" problems

m Don't want to force all developers to use
same development environment (e.g. choice of OS)

Possible solution: VirtualBox + Vagrant (https://www.vagrantup.com/)
m "'Deploy" to a virtual machine on your local OS for development

Application Deployment — Software Engineering Il — WS 2017/18 http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500 2 7

https://www.vagrantup.com/
http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500

Agenda

1. DevOps
2. Application Hosting Options
3. Automating Environment Setup
m Virtualization
m Provisioning
4. Deployment Scripting
5. Application Monitoring
6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

28

Next Step: Automate VM Configuration

Virtualization software provides a VM.
Provisioning tools configure it, e.g. install required software.

Why not provision manually?

mError prone, repetitive tasks

m Documentation has to be kept up-to-date

m Explicit knowledge transfer required if Admin changes

One provisioning tool example: Chef (http://chef.io, https://github.com/chef/chef)
m Formalize software install and configuration state into recipes

m Recipes (e.g. for rails4) are shared (https://supermarket.chef.io/cookbooks)

m Ensure software is installed based on dependencies

m Ensure that files, packages, and services are in the prescribed state

Common alternative: Puppet (https://puppetlabs.com/)
Application Deployment — Software Engineering Il — WS 2017/18

29

http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks
https://puppetlabs.com/

Provisioning Summary

Create your VM, e.g. describe it with Vagrant.

Using provisioning tools, you can:

m Define the required packages for all required servers
m Install and configure necessary services

m Create the directory structure for your application

m Create custom configuration files (e.g., database.yml)

Not touched here but also possible:

m Use templates to create different files based on variables

m Environments (staging vs. production)

m Central management of configuration files that are automatically
transferred to clients

Application Deployment — Software Engineering Il — WS 2017/18

30

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

31

Environment is set - How to deploy?

Necessary steps after the server is configured:

m Checkout code changes

m Update your dependencies (i.e. gems)

m Run database migrations, restart application servers

m Optional: Restart index servers, setup new Cron jobs, etc.

Remember: Automation!

m Easiest: Travis Cl supports deploying to many hosting providers
(http://docs.travis-ci.com/user/deployment/)

0 Deploy after all the tests pass

m Alternative: Capistrano (https://github.com/capistrano/capistrano)
O Prepares the server for deployment (possibly using provisioning tools)
0 Deploy the application as updates are made

Application Deployment — Software Engineering Il — WS 2017/18

32

http://docs.travis-ci.com/user/deployment/
https://github.com/capistrano/capistrano

Deployment with Travis Cl

Travis Continuous Integration and Deployment Workflow:

1.

2.

3.

testsare__ ,
run

5.

6.

optional 7.

steps 8.

9.

before install
install

before script
script

after successor
after failure
after script
before deploy
deploy

after deploy

A non-zero exit-status is these phases
means the build is marked as failed.
The build is not deployed to

the hosting provider.

Otherwise it is deployed in the
deploy step.

mAcustom after success step can be used to deploy to own servers
(http://docs.travis-ci.com/user/deployment/custom/)

Application Deployment — Software Engineering Il — WS 2017/18 http://docs.travis-ci.com/user/build-lifecycle/

33

http://docs.travis-ci.com/user/build-lifecycle/
http://docs.travis-ci.com/user/deployment/custom/

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

34

Monitoring your servers and application L

Keep an eye on server health and applications:

m Get alerts when components fail or exceed predefined thresholds

m Examples:
0 Uptime Robot—HTTP GET / ping every 5 mins (https://uptimerobot.com/)
0Nagios—Monitor infrastructure, down to switches and services (http://nagios.org)

Monitor application errors and performance bottlenecks:
m Monitor errors that happen at runtime, discovered by users
m Notifications upon application errors, slow downs
m Good idea: Protocols for error fixing!
m Examples:
O Errbit—Collect and organize errors (https://github.com/errbit/errbit)
O0New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

Application Deployment — Software Engineering Il — WS 2017/18 3 5

https://uptimerobot.com/
http://nagios.org
https://github.com/errbit/errbit
http://newrelic.com/

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Application Deployment — Software Engineering Il — WS 2017/18

36

Deploying 50 times a day? L

Continuous Delivery

Advantages:

m Users get a sense of “something happening” frequently, shorter feedback loop
m Business value of features immediately present

m Deploy scripts used often, less likely to contain errors

m Reduced amount of code changes per release - faster fixes, less downtime

Prerequisites/Disadvantages: Discu55i0n='

m Only feasible with extensive set of good tests Operating systems

m Tests / deployment need to run fast (Continuous Integration) feature both CD
.y . . (rolling releases)

m Additional training for developers (DevOps) required B classical

m May not be feasible for applications that require planning or approaches

. leases)
long-term support (e.g. operating systems) (LTS releas

Application Deployment — Software Engineering Il — WS 2017/18

37/

Continuous Deployment vs. Scrum L

How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):
m Intermediate Reviews for individual stories by the PO
O At sprint review, each finished story is already running in production
0 Review meetings become shorter, more of a high level overview
m Get faster feedback from stakeholders for next Scrum meeting
m Deploying to staging or testing systems becomes part of the definition of done
m Acceptance of features not only based on PO approval but stakeholder approval?
0A/B testing?
m "Working software is the primary measure of progress"—Agile Manifesto
O ls software that is not deployed working? (DevOps)

Application Deployment — Software Engineering Il — WS 2017/18 3 8

Summary

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Conclusion: Automate everything!

https://github.com/narkoz/hacker-scripts ;-)

Application Deployment — Software Engineering Il — WS 2017/18

39

https://github.com/narkoz/hacker-scripts

Image Credits

m thenounproject.com
0 Box designed by Mourad Mokrane
0 Bricks designed by Trammie Anderson

Application Deployment — Software Engineering Il — WS 2017/18

40

