


■ Two different concepts of when to do reviews

□ Conceptually before or after change is in the repository

□ Repository can be varied

– Git, Mercurial, Perforce, Bazaar

– Stack of papers

□ Pre-commit the more controlling approach

– Suitable for trunk-based development

■ Pull Requests and PR comments are implementation of post-commit reviews

□ Depending on specifics of implementation concepts can have similarities



Everyone passed \o/

■ Good job!

■ Pretty young idea

■ Keeps evolving (e.g. using GitHub classroom)

■ Thanks for giving us feedback, helps us improve the exercise



Should be possible to dismiss issues

■ You are all admins of the repo

and have all of the rights

■ Might help to add the 

repository to CC:

codeclimate.com/oss/dashboard

■ If dismissing a lot of issues,

change config

■ Do not let the linters slow you down!

■ Ask if you need any credentials!





1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Users

Production
Current Release

Dev A

Dev B

Repository
All Code

Development
Working Copy

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Problems

■ Software needs to be operated

□ Developers vs. Admins

■ Short deployment cycles

■ Maintain quality standards

DevOps

■ Formalized process for deployment

■ Focus on communication, collaboration, 

and integration between Dev and Ops Customer Devs Admins

Agile DevOps

“Agile for deployment”



Dev A

Dev B

Users

Repository
All Code

Development
Working Copy

Production
Current Release

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Release

■ Planned state of the application

■ Set of requirements

■ Examples

□ Next big version with new shiny features

□ Urgent hotfix

□ Anything in-between

Version

■ Could be anything

■ A release has a version number



Build

■ Attempt to implement a release

□ Snapshot of application

■ Often the output of the build tool

□ Not: the build script/tool/process

■ Version number is 

“<Release Number>.<Build Number>”



Environment

■ A system on which the application 

can be deployed and used

To promote

■ To deploy a build on the next environment

To release

■ To promote a build to production

■ Thereby finishing the release



Development

■ Where the developers work

■ One per developer (if possible)

Integration

■ Runs all tests

■ A try-out version

Quality Assurance

■ Professional manual testing

Staging

■ Clone of production system

■ Final rehearsal

Production

■ The live system

■ Failures are expensive here



Release 3.7

Integration Quality Assurance Staging Production

Build 5Build 5 Build 5

Build 2



Release 3.7

Integration Quality Assurance Staging Production

Build 5

Build 2

Build 5Build 5

Build 6Build 7Build 8

Build 7

Developers
changing Code



Promote & Test

Define Release

Promote & Test

Change Code

Assemble Build

Promote & Test Release
AcceptReject



Dev A

Dev B

Admins Users

Integration
Latest Build

Repository
All Code Quality Assurance

Latest Build/
Release Candidate

Staging
Current Release/
Release Candidate

Production
Current Release

Quality 
Assurance

Project Team/
Project Lead

Development Operations

Development Data
Test Data
Production Data

Code
Build

Development
Working Copy

Development
Working Copy



Builds are immutable

■ If changed, previous testing was pointless

Even the smallest change has to go through all environments

Many systems required

■ Each environment has to be maintained

■ Automation?

Deployment overhead

■ Manual steps are potential for human failure

■ Automation?

Remainder of this lecture



1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Choice of hosting options is driven by a variety of parameters

■ Initial setup effort, cost, and required expertise

■ Operational costs and effort

■ Targeted service level agreements (SLAs)

■ Legal considerations (data privacy, liability, etc.)

Low Effort
Little Control

High Effort
High Control

Own
Datacenter 

PaaS IaaS
Dedicated 

Hosting



Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages

■Minimal effort and knowledge required for setup

■Only platform development knowledge (e.g. Python, Ruby) needed, 

no need for hardware / OS maintenance

■Possibility to scale up quickly and easily

Disadvantages

■Usually fixed environment with little variation points

■Provider SLA targets might differ from yours, e.g. downtime, response times

■Limited technical support

Examples: Heroku, Azure Compute, Google App Engine



Providers deliver virtual private servers (VPS) with requested configuration 

Setup of execution environment, database servers, etc. is up to customers

Advantages

■Flexibility regarding execution environment

■Avoid management of underlying hardware

■Dynamic on-demand scaling of resources

Disadvantages

■Server administration know-how and efforts required

■ It’s still a VM: Potential performance drops, Disk I/O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean



Providers allocate dedicated hardware, classical approach

Advantages

■Complete control over server, down to bare metal, full power always available

■No virtualization-related performance issues

■More control over network configuration

■Dedicated SLAs

Disadvantages (compared to Iaas)

■No easy scaling of resources

■Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe



You host your own servers

Advantages

■Complete control over data, security, operations, network etc.

■Custom designed servers possible

■Add cabinets in available space with low cost

Disadvantages

■Huge upfront costs, e.g. space, cooling, fiber, hardware

■Expanding the space of the datacenter is expensive

■Provide around the clock support, monitoring, personnel, etc.

■Not feasible for small companies

Examples: Google, Facebook



1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Provisioning

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Main challenges in preparing infrastructure:

■Minimize the effort required to repeatedly 

setup identical execution environments

■Without relying on “administration gurus”

Solutions:

■DevOps, i.e. a strong collaboration between 

the development and the operations team

■A strong bias towards automation



■Hosted solutions aren't always feasible for initial experiments

■Maintaining local installs of server stacks in different versions can get 

cumbersome (e.g. XAMPP, WAMP, LAMP) 

■Development vs. production environment differences 

result in "it works on my machine" problems

■Don't want to force all developers to use

same development environment (e.g. choice of OS)

Possible solution: VirtualBox + Vagrant (https://www.vagrantup.com/)

■"Deploy" to a virtual machine on your local OS for development

http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500

https://www.vagrantup.com/
http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500


1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Provisioning

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Virtualization software provides a VM.

Provisioning tools configure it, e.g. install required software.

Why not provision manually?

■Error prone, repetitive tasks

■Documentation has to be kept up-to-date

■Explicit knowledge transfer required if Admin changes

One provisioning tool example: Chef (http://chef.io, https://github.com/chef/chef)

■Formalize software install and configuration state into recipes

■Recipes (e.g. for rails4) are shared (https://supermarket.chef.io/cookbooks)

■Ensure software is installed based on dependencies

■Ensure that files, packages, and services are in the prescribed state

Common alternative: Puppet (https://puppetlabs.com/)

http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks
https://puppetlabs.com/


Create your VM, e.g. describe it with Vagrant.

Using provisioning tools, you can:

■Define the required packages for all required servers

■ Install and configure necessary services

■Create the directory structure for your application

■Create custom configuration files (e.g., database.yml)

Not touched here but also possible:

■Use templates to create different files based on variables

■Environments (staging vs. production)

■Central management of configuration files that are automatically 

transferred to clients



1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Necessary steps after the server is configured:

■Checkout code changes

■Update your dependencies (i.e. gems)

■Run database migrations, restart application servers

■Optional: Restart index servers, setup new Cron jobs, etc.

Remember: Automation!

■Easiest: Travis CI supports deploying to many hosting providers
(http://docs.travis-ci.com/user/deployment/)

□Deploy after all the tests pass

■Alternative: Capistrano (https://github.com/capistrano/capistrano)

□Prepares the server for deployment (possibly using provisioning tools)

□Deploy the application as updates are made

http://docs.travis-ci.com/user/deployment/
https://github.com/capistrano/capistrano


Travis Continuous Integration and Deployment Workflow:

1. before_install

2. install

3. before_script

4. script

5. after_success or 

after_failure

6. after_script

7. before_deploy

8. deploy

9. after_deploy

optional
steps

A non-zero exit-status is these phases
means the build is marked as failed.
The build is not deployed to 
the hosting provider.

Otherwise it is deployed in the 
deploy step.

http://docs.travis-ci.com/user/build-lifecycle/

■A custom after_success step can be used to deploy to own servers
(http://docs.travis-ci.com/user/deployment/custom/)

tests are
run

http://docs.travis-ci.com/user/build-lifecycle/
http://docs.travis-ci.com/user/deployment/custom/


1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Keep an eye on server health and applications:

■Get alerts when components fail or exceed predefined thresholds

■Examples: 

□Uptime Robot—HTTP GET / ping every 5 mins (https://uptimerobot.com/)

□Nagios—Monitor infrastructure, down to switches and services (http://nagios.org)

Monitor application errors and performance bottlenecks:

■Monitor errors that happen at runtime, discovered by users

■Notifications upon application errors, slow downs

■Good idea: Protocols for error fixing!

■Examples: 

□Errbit—Collect and organize errors (https://github.com/errbit/errbit)

□New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

https://uptimerobot.com/
http://nagios.org
https://github.com/errbit/errbit
http://newrelic.com/


1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum



Advantages:

■Users get a sense of “something happening” frequently, shorter feedback loop

■Business value of features immediately present

■Deploy scripts used often, less likely to contain errors

■Reduced amount of code changes per release → faster fixes, less downtime

Prerequisites/Disadvantages:

■Only feasible with extensive set of good tests

■Tests / deployment need to run fast (Continuous Integration)

■Additional training for developers (DevOps) required

■May not be feasible for applications that require planning or

long-term support (e.g. operating systems)



How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):

■ Intermediate Reviews for individual stories by the PO

□At sprint review, each finished story is already running in production

□Review meetings become shorter, more of a high level overview

■Get faster feedback from stakeholders for next Scrum meeting

■Deploying to staging or testing systems becomes part of the definition of done

■Acceptance of features not only based on PO approval but stakeholder approval?

□A/B testing?

■"Working software is the primary measure of progress"—Agile Manifesto

□ Is software that is not deployed working? (DevOps)



1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Conclusion: Automate everything!
https://github.com/narkoz/hacker-scripts ;-)

https://github.com/narkoz/hacker-scripts


■ thenounproject.com

□ Box designed by Mourad Mokrane

□ Bricks designed by Trammie Anderson


