Hasso
Plattner
Institut

IT Systems Engineering | Universitdt Potsdam

Tips and Tricks

Christoph Matthies (christoph.matthies@hpi.de)
Arian Treffer (arian.treffer@hpi.de)

Software Engineering |l Prof. Plattner, Dr. Uflacker
WS 2017/18 Enterprise Platform and Integration Concepts

Image by Steven Depolo (CC BY 2.0)

Agenda

1. Value-based Requirements Analysis
2. Organizing your Project

3. Git Tricks

4. Outlook

Tips & Tricks — Software Engineering Il — WS 2017/18 2

\Value-based Requirements Analysis

m Requirements are often analyzed in a value-neutral environment
[Boehm, Barry W. "Value-based software engineering: Overview and agenda." 2006]

m 80% of the value is expressed in 20% of the requirements (Pareto principle)
[Koch, 1998]

m A value-oriented approach is more appropriate

m How to do that?

|dentify the system's success-critical stakeholders

Obtain their value propositions with respect to the system
Estimate / find out value of a requirement to the stakeholders

0
0
0
0 Estimate effort to implement a requirement

Tips & Tricks — Software Engineering Il — WS 2017/18

\Value-based Requirements Analysis L

Value A fix) = 2x

Rules:

m Implement: Above 2x

m Skip: Below 1/2x

m In-between: Review
fix) = vax

m Whole truth?

m Beware of dependencies!

-
Effort

Tips & Tricks — Software Engineering Il — WS 2017/18

Minimum Viable Product

The minimal set of features that can be useful.

Advantages
m Earlier, better user feedback
0O Butcan’t replace rapid prototyping

m Move faster into production
0 Software is developed for a reason
m Project can no longer fail entirely Reliable

Not this

Challenges
m Requires “product” quality early on

0 No time for “and now we fix the bugs” (should not happen, anyway)
0 Also consider usability, deployment, support, marketing

m Requires smart requirement management
O But also makes requirement management easier

Functional

Tips & Tricks — Software Engineering Il — WS 2017/18 5

Agenda

1. Value-based Requirements Analysis
2. Organizing your Project
m Scrum Burn-Down Chart
m Communication
m Dealing with Dependencies
m Estimating Large Backlogs
m Beyond Scrum
3. Git Tricks
4. Outlook

Tips & Tricks — Software Engineering Il — WS 2017/18

Organizing your Project

Questions:

m Which stories are part of Sprint#1?
m Who is working on which tasks?

m Which version is a good one that can be shown to the customer?
Tools that might help:

m Put your user stories & tasks into Github's issue tracker
O Assign issues to developers
0 Use milestones to assign user stories to sprints
0 Use issue tags, e.g. to denote responsible teams or status
0

e.g. https://waffle.io/ or https://www.zenhub.io/
m Tag versions that can be presented

$ git tag —a v0.1 —m 'version after Sprint#1 without US #2'

Tips & Tricks — Software Engineering Il — WS 2017/18

@

Side note:

When assigning tickets to
devs it's helpful if 7
usernames are identifiable
(or there is some info on
the profile). ,
mwho is ,gronkh12
again?"

Use "project management" tools that give an overview of GH issues,

https://waffle.io/
https://www.zenhub.io/

Scrum Burn-Down Chart

a0

Start
20

14

10

=um of Task Estimates (days)

a 5 10

teration Timeline (days)

Project X7 Keration 1 Burn Down

15

20

B Iceal Tasks Remaining
B Actual Tazks Remaining

End

X-Axis: sprint timeline, e.g. 10 days

Actual work remaing line

0 above ideal > behind schedule, below ideal > ahead schedule

Tips & Tricks — Software Engineering Il — WS 2017/18

Graphical representation of work left to do versus time

Y-Axis: work that needs to be completed in sprint (time or story points)
"Ideal" work remaining line: straight line from start to end

Image: 18abug (CC BY-SA 3.0) 8

https://en.wikipedia.org/wiki/Burn_down_chart#/media/File:Burn_down_chart.png

;
|
I

Scrum Boards - Virtual vs. Real-Life

B 3 . -
-) S
: R —
-y Qv -
e :
. ot 2 3 S
M) -
P Sy P Lissast] L‘;:ﬂ-\ru'e'-fﬂ.':'\ 'S
- ! ol o Tl B ihernys

_— L

- * U asiva Ao = W PPN |

SRR e R N 3 L {D’D &
- o N
g | Py

S S

-
B
" -~

e ™ - P

o iy e °. “a, me PR R S
A S M & = o »
O 1 A SLlesi g ne
CUo 0D \m' e Qr-‘rﬂ.(/‘ __-_.,: . :
L= 24y a“lA‘ Cara qr\-!\/\' -»..; S
e b e "L -!‘.\:wa'_ﬁ wu':“. a.l'\ﬂ‘,\ﬁ:\ -___‘.; :
:::-—i-:-ob-o e VW O3y Dw:fpr‘,.'n.(AR el =
T30 Nt s Wten B € D2 malasan S -~
» S o . . ~ - MMA’." _: !
s m.’w ‘3 3. >A46M g-\cq‘ .\-r
| i S S =
2 0z TWAPanap 3T a0
- . . . }
2§ IR ey

UL e

1'--'1

|| I

Definition of Done

How do | know when to stop?
Acceptance criteria fulfilled
All tests are green

Code looks good

Objective quality goals
Second opinion
Internationalization
Security

Documentation

The Definition of Done is the team’s consensus of what it takes to
complete a feature.

Tips & Tricks — Software Engineering Il — WS 2017/18

10

Definition of Ready

m Similar to Definition of Done, but for user stories
m Answer the question: When is a user story ready for implementation?

Examples

m Estimated

m Acceptance criteria

m Mockups for Ul stories

Tips & Tricks — Software Engineering Il — WS 2018/18

11

Communication E

Questions:
. . WHERE couwLD THIS BRIDGE THIS SICN DOESN'T
m How do we communicate in and between teams? | Fossier reao? HELP ME MUCH.
m How do I find out about architecture changes? |
m How do | know how to use other people's code?

Tools that might help:
m Github wiki to (briefly!) document how to use components
m Code comments explaining the larger context, common pitfalls
m One(!) common communication channel for announcing changes,
e.g. E-Mail list, IRC, IM, Slack, Google Hangouts, Facebook group

Tips & Tricks — Software Engineering Il — WS 2017/18 Image: Abstruse Goose (CC BY-NC 3.0 US]- 2

http://abstrusegoose.com/432

Dealing with Dependencies L
Ambassadors

28~ Fa&&
a a

m Mutual Exchange of team members

O Improves efficiency of communications

0 Allows deeper understanding of problems

0 Prevents coordination problems early in the process
m Ambassadors should be fully integrated team members
m Especially useful for APl development, design, etc.

Tips & Tricks — Software Engineering Il — WS 2017/18 [Pichler, Scrum — Agiles Projektmanagement erfolgreich einsetzen, 2007] 1 3

Dealing with Uncertainty
Spikes

What can we do if no team members lack knowledge in a particular domain?
m Hard to estimate with little knowledge

m Take time out of the sprint to research and learn
m Spike

m For example, evaluate new technologiess

Tips & Tricks — Software Engineering Il — WS 2017/18

14

Estimating Large Backlogs (1/2)

Bucket Estimation (Jukka Lindstrom) [Scrumcenter, 2009]
m Create physical buckets based on examples (2-3 per bucket)
m Assign items to buckets one by one through

0 Comparing & discussing

0 Planning Poker

=
T T
——

t— {

* -—-—. { !
- -— —— - i

———— — — { :

- - - -
& | —— . -
. ———— . | — ———

!

Tips & Tricks — Software Engineering Il — WS 2017/18 1 5

Estimating Large Backlogs (2/2)

Affinity Estimation (Lowell Lindstrom) [Scrumcenter, 2009]
m Read each story to the entire team
m Arrange stories horizontally based on size (no talking!)
m Place Fibonacci numbers above the list
m Move each story to the preferred number

orater | — || || || || -
1) 2 A — y
] LI — -
Y= = —

= | = | —]

Tips & Tricks — Software Engineering Il — WS 2017/18

16

Beyond scrum Kl

Scrum critique:
m Scrum and agile are by no means universally accepted as "the way" to do
software engineering (“Agile Hangover”)

m Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

O Business-driven engineering — Scrum increases the feedback frequency while
giving engineers no real power

0 Terminal juniority — Architecture and R&D and product development aren’t
part of the programmer’s job

O It’s stupidly, dangerously short-term — engineers are rewarded or punished
solely based on the completion, or not, of the current two-week “sprint”

Tips & Tricks — Software Engineering Il — WS 2017/18 1 7

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

Agenda

1. Value-based Requirements Analysis
2. Organizing your Project

3. Git Tricks

4. Outlook

Tips & Tricks — Software Engineering Il — WS 2017/18

18

Git Tricks —amend, interactive staging

Change commit message of previous commit
(Careful, don't do this if you already pushed the commit)

$ git commit --amend -m "new message"

Forgot to commit files?
$ git add [missing files]
$ git commit --amend #uses the previous commit's message

Undo the amending ‘

$ git reset --soft HEAD@{1}
$ git commit -C HEAD@{1}

Opinion:
Interactive staging
(git add -1) t
. . It i is probably the mos
Interactive staging (also allows committing only parts of files) ponNerfu| e
gt you're not using yet.
$ git add --patch [file]

Tips & Tricks — Software Engineering Il —WS 2017/18

Git Tricks —reflog, diff, stash

Log of all recent actions
$ git reflog

What did | work on recently?
Show differences that are not staged yet

$ git diff

Shows differences between staging and the last file version

<

$ git diff --staged
Tip:
. . - . : is often
Temporarily store/retrieve all modified tracked files git stash 150 "
helpful if you don
% gitstash want to directly
$ glt stash pop Commit your changes,
but need to checkout
List all stashed changesets another .
branch/commit.

$ git stash list

Tips & Tricks — Software Engineering Il —WS 2017/18

Git Tricks —log, blame, rebase E

Shorter version of the git log

$ git log --abbrev-commit

pretty=oneline

Show pretty graph of git history

$ git log --graph --decorate --pretty=oneline --abbrev-commit

Show changesets in the log
$ gitlog-p

Show what revision and author last modified each line Warning:

Do not rebase commits
date=short [file] that others have worked

with! d
"people will hate)I;Ol}, ol i
' ' - : - ou’ll be scorned by jrien

History is becoming cluttered with merge commits)(;ndfamily." .-

. .//git-scm.com .

$ git rebase <branch> D ng-Rebasing#The-Perils-of
Rebasing
F

$ git blame

Tips & Tricks — Software Engineering Il —WS 2017/18

https://git-scm.com/book/en/v1/Git-Branching-Rebasing#The-Perils-of-Rebasing

Git Rebase —setup

experiment

)
'

m Created "experiment" branch
to try something out

ﬁ
]
(=]

rL
8]
F

1
]
P

1
'
Y

M

$ git checkout —b "experiment"

—

$ git commit—a—m "C3"

master

m Easiest way to integrate the branches is merge
0 Will create merge commits

experiment

C

ololafc

masier

$ git checkout master

$ git merge experiment

.'

Tips & Tricks — Software Engineering Il — WS 2017/18 https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)Z 2

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

GIt Rebase — execution ﬂ

m git rebase
0 Take all the changes that were committed on
one branch and replay them on another one C3

0 Only do this with local commits !
!

masier

experiment

$ git checkout experiment

$ git rebase master

m Afterwards: fast-forward the master branch
0O No merge commits

$ git checkout master (0) (.) (<) (c)

experiment

$ git merge experiment

master

Tips & Tricks — Software Engineering Il — WS 2017/18 https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)2 3

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Git cherry-pick

m Problem: Quickly get changes from other commits
without having to merge entire branches
m git cherry-pick
0 apply the changes introduced
by existing commits

experiment

$ git checkout master

$ git log --abbrev-commit --pretty=oneline
d7ef34a C3: Implement feature

Obe778a C4: critical change introduced

master

$ git checkout experiment
$ git cherry-pick Obe778a

Tips & Tricks — Software Engineering Il — WS 2017/18 https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)2 4

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Git Selt-help Resources L

m How to undo (almost) anything with git — guide by Github

0 https://github.com/blog/2019-how-to-undo-almost-anything-with-git one
m Git cheat sheet — by Github

0 https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

m Git FAQ —answers to common questions

o http://gitfag.org/
0 https://git.wiki.kernel.org/index.php/Git FAQ

m Git pretty — troubleshooting flowchart
0 http://justinhileman.info/article/git-pretty/

Split off a logical chunk
from your mess, stage it,
and commit it with a

Tips & Tricks — Software Engineering Il — WS 2017/18 2 5

https://github.com/blog/2019-how-to-undo-almost-anything-with-git
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
http://gitfaq.org/
https://git.wiki.kernel.org/index.php/Git_FAQ
http://justinhileman.info/article/git-pretty/

Tooling suggestions

m Many GUIs for git available (https://git-scm.com/downloads/guis)

0 Make some complex git interactions much simpler
0 Draw pretty commit graphs, overviews of branches and merges
0O GitX, TortoiseGit, SourceTree, Tower, SmartGit, gitg, git-cola

m Github Integration

0 Github also provides git tools
https://mac.github.com/, https://windows.github.com/

m Git extras (https://github.com/tj/git-extras)

m Common git commands bundled

Tips & Tricks — Software Engineering Il — WS 2017/18

26

https://git-scm.com/downloads/guis
https://mac.github.com/
https://windows.github.com/
https://github.com/tj/git-extras

release
feature

[]
B r a n C h I n g branches develop branches hotfixes master
i as

Ideas
m Never merge in master or release branches
m Never break build in shared branches

Tips & Tricks — Software Engineering ll—ws 2017718 http://nvie.com/posts/a-successful-git-branching-model/ 2 7

http://nvie.com/posts/a-successful-git-branching-model/

Agenda

1. Value-based Requirements Analysis
2. Organizing your Project

3. Git Tricks

4. Outlook

Tips & Tricks — Software Engineering Il — WS 2017/18

28

Outlook

Last SWT Il lecture this year
m Happy holidays!

Next lecture in the new year

m 19.January 2018

m Guest lectures

m Lecture on Lean Software and Kanban

Tips & Tricks — Software Engineering Il — WS 2017/18

29

