
Organizational Matters

Christoph Matthies

christoph.matthies@hpi.de

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts group

Software Engineering II
WS 2018/19

Scrum — Software Engineering II

Communication

If you haven't yet ...

■ Sign up to mailing list

■ Join Slack, teaching team is available

■ All links are on the course website

■ Slides are uploaded there too

November 15, 2018 2

Scrum — Software Engineering II

Next Weeks’ Schedule

Previous weeks

■ Introduction lectures

■ Testing

Week Nov 5 – Nov 9

■ Finish intro exercise

■ Finalize teams + meeting times

■ POs: Customer meeting!

□ Write initial user stories

Nov 9 Lecture

■ 1st slot: Scrum LEGO Exercise!

□ Room D.E-9/10

■ 2nd slot:

□ Kick-off

□ Present vision

□ Start of project

November 15, 2018 3

Scrum

Prof. Plattner, Dr. Uflacker
Enterprise Platform and Integration Concepts group

Software Engineering II
WS 2017/18

Scrum — Software Engineering II

Scrum

1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum

November 15, 2018 5

Scrum — Software Engineering II

■ Delivering late

■ Delivering over budget

■ Delivering the wrong thing

■ Unstable in production

■ Costly to maintain

How Traditional Projects Fail

6November 15, 2018

Scrum — Software Engineering II

■ Smart people trying to do good work

■ Stakeholders are well intended

Process in traditional projects

■ Much effort for

□ Documents for formalized hand-offs

□ Templates

□ Review committees

Why Traditional Projects Fail

7

Planning Analysis Design Code Test Deploy

November 15, 2018

Scrum — Software Engineering II

The later we find a defect, the more expensive it is to fix it!

Does front-loading a software development process make sense?

Reality shows:

■ Project plans are wonderful

■ Adjustments & assumptions are made during analysis, design, code

■ Re-planning takes place

■ Example: Testing phase at the end

□ Tester raises a defect

□ Programmer claims he followed the specification

□ Architect blames business analyst etc.

□ Exponential cost

Why Traditional Projects Fail

8November 15, 2018

“ ”

Scrum — Software Engineering II

■ People are afraid of making changes

■ Unofficial changes are carried out

■ Documents get out of sync

■ ...

Again, why do we do that!?

To minimize the risk of finding a defect too late…

Why Traditional Projects Fail

9November 15, 2018

Scrum — Software Engineering II

■ We conduct the front-loaded process to minimize exponential costs of change

□ Project plan

□ Requirements specification

□ High-level design documents

□ Low-level design documents

■ This process causes the exponential costs of change!

➔ A self-fulfilling prophecy

This makes sense for a bridge, ship, or a building

but software (and Lego) are easy to change!

A Self-Fulfilling Prophecy

10November 15, 2018

Scrum — Software Engineering II

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

The Agile Manifesto

11

http://agilemanifesto.org/

November 15, 2018

http://agilemanifesto.org/

Scrum — Software Engineering II

No longer late or over budget

■ Tiny iterations

■ Easy to calculate budget

■ High-priority requirements first

No longer delivering the wrong thing

■ Strong stakeholder communication

■ Short feedback cycles

How Agile Methods Address Project
Risks

12November 15, 2018

Scrum — Software Engineering II

No longer unstable in production

■ Delivering each iteration

■ High degree of automation

No longer costly to maintain

■ Maintenance mode starting with Sprint 2

■ Maintenance of multiple versions during development

How Agile Methods Address Project
Risks

13November 15, 2018

Scrum — Software Engineering II

Outcome-based planning

■ No complete detailed project plan

Streaming requirements

■ A new requirements process

Evolving design

■ No complete upfront design → flexibility required

■ Emergent Design

Changing existing code

■ Need for refactoring

The Cost of Going Agile

14November 15, 2018

Scrum — Software Engineering II

Frequent code integration

■ Continuous integration

Continual regression testing

■ Add nth feature; test n-1 features

Frequent production releases

■ Organizational challenges

Co-located team

■ Easy communication, keep momentum

The Cost of Going Agile

15November 15, 2018

Scrum — Software Engineering II

Pros and Cons

■ Short planning horizon

■ No up-front design

■ Stories instead of requirement documents

■ Extreme ideology

Discuss!

November 15, 2018 16

Scrum — Software Engineering II

Scrum

1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum

November 15, 2018 17

Scrum — Software Engineering II

Scrum

November 15, 2018 18

Product Backlog Sprint Backlog
Sprint

Working increment
of the software

2 weeks –
1 month

Product Owner
Team

24 h

Scrum Master

Planning

Daily Scrum

Review/
Retrospective

Scrum — Software Engineering II

The Team

November 15, 2018 19

Product
Owner

Developers

Scrum
Master

Customer Management

Scrum — Software Engineering II

Responsibilities

■ Customer communication

□ Contact person for team

■ Product Backlog

□ User Stories

□ Priorities

■ Acceptance Criteria & Tests

Product Owner

20

Scrum — Software Engineering II

Responsibilities

■ Process manager

□ Moderator in meetings

■ Management communication

□ Remove impediments

■ Enabler, not boss

Scrum Master

21

Scrum — Software Engineering II

Responsibilities

■ Communication

□ Critically discuss all inputs

□ Honestly share important information

□ Represent team as expert

■ Sprint Backlog

■ Developing ;-)

Developers

22

Scrum — Software Engineering II

List of work items

■ Requirements (modification requests)

□ Features

□ Bug fixes

■ Ordered/prioritized

Product Backlog

November 15, 2018 23

Scrum — Software Engineering II

In Scrum, requirements are often defined as user stories:

“As <role>, I want <feature> to <reason>”

Requirements need to fulfill INVEST properties:

■ I – Independent

■ N – Negotiable

■ V – Valuable

■ E – Estimable

■ S – Small

■ T – Testable

Requirements

November 15, 2018 24http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Scrum — Software Engineering II

Filling the sprint

■ Estimate Backlog items

■ Move items from Product to Sprint Backlog

Defining the work

■ Break down Backlog items into tasks

■ PO not required

Total time: 2 hours per week of sprint

Planning Meeting

November 15, 2018 25

Scrum — Software Engineering II

For better planning, stories are broken down into tasks

Tasks should be SMART:

■ S – Specific

■ M – Measurable

■ A – Achievable

■ R – Relevant

■ T – Time-boxed

Tasks

November 15, 2018 26http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Scrum — Software Engineering II

List of tasks for a sprint

■ Tasks are signed-up for, not assigned

■ During the sprint

□ No new features

□ Team may change/add tasks

Sprint Backlog

November 15, 2018 27

Scrum — Software Engineering II

Status update

■ Last achievements

■ Next steps

■ Problems

Max. 2 min per person

Discussions?

■ Schedule subsequent expert’s meeting

Daily Scrum Meeting

November 15, 2018 28

Scrum — Software Engineering II

Acceptance of Features

■ Demo to PO

□ PO should be prepared

□ Optional: invite other stakeholders

■ Comments by developers

Review Meeting

November 15, 2018 29

Scrum — Software Engineering II

Internal team evaluation

■ PO not required

■ Discuss process and problems

■ Measure improvements

Retrospective Meeting

November 15, 2018 30

Scrum — Software Engineering II

Potentially shippable increment

■ Complete according to Definition of Done

□ Even if not actually released

■ No regrets if project ended now

Product Increment

November 15, 2018 31

Scrum — Software Engineering II

Scrum

Team

■ Product Owner

■ Scrum Master

■ Developers

Artifacts

■ Product Backlog

■ Sprint Backlog

■ User Stories

■ Software Increment

November 15, 2018 32

Meetings

■ Planning

■ Daily Scrum

■ Review

■ Retrospective

Scrum — Software Engineering II

■Depends on software engineering process

■ Highly uncertain, must be negotiated and revised with stakeholders

■Waterfall effort estimation

□Methods: calibrated estimation model based on historical size

(Function Points, LOC, …); expert judgment; …

□Output: X man-months

■ Agile effort estimation

□ Iterative methods, shorter planning horizon

□ Output: functionality to be implemented in the next iteration

□Different methods exist

Effort, Schedule, and Cost Estimation

November 15, 2018 33

Scrum — Software Engineering II

Participants

■ Everyone operationally involved in creating the software product

■ Product Owner (and Scrum Master) are not playing

Preconditions

■ Product backlog is complete and prioritized

■ Backlog items are known by the team

■ The effort for a small backlog item was determined as a reference

■ Every participant has a set of sizing cards

Effort Estimation: “Planning Poker”

November 15, 2018 34

Scrum — Software Engineering II

■ Product owner explains backlog item

■ Product owner answers questions of team members

■ Participants estimate complexity of item and choose a card (hidden)

■ All cards shown simultaneously

■ Participants with highest and lowest number explain choices

■ The arguments are discussed in the group

Planning Poker 1/2

November 15, 2018 35

Scrum — Software Engineering II

■ A new vote is conducted

■ Team agrees on item size

□Most occurring or average value is acceptable

□ If not, another round is played

■ The moderator notes size of backlog item in the product backlog

■ The game ends if all backlog items are sized or time is over

Planning Poker 2/2

November 15, 2018 36

Scrum — Software Engineering II

■ Participants

□ Everyone operationally involved in creating the software product

□ Product Owner (and Scrum Master) are not participating,

but are present for questions

■ Preconditions

□ Product backlog is complete, prioritized and understood

□ A shared space to work in

□User Stories in physical form (e.g. post-it notes or printed)

Effort Estimation:
“Affinity Estimation”

November 15, 2018 37

Scrum — Software Engineering II

■ Step 1: Silent Relative Sizing

□ Team members place backlog items on scale of “smaller” to “larger”

□No discussion at this point

Affinity Estimation 1/2

November 15, 2018 38http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/

http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/

Scrum — Software Engineering II

■ Step 2: Editing

□ Team members rearrange stories on the scale, discuss changes

□ Clarifications from PO

Affinity Estimation 2/2

November 15, 2018 39

■ Step 3: Place stories into categories

□ Place size categories (e.g. Fibonacci sequence) above scale

□ Assign each story a size based on location

Scrum — Software Engineering II

Begin the sprint

■ Select stories until sprint is full

■ Break down stories into tasks and fill your Scrum Board

■ Assign stories to developer(s)

■ Implement the stories task by task

After the Planning Meeting

November 15, 2018 40

Scrum — Software Engineering II

Project Workflow: Product Owner

November 15, 2018 41

Talk to User /
Review Existing
System

• Informal List
of Desired
Functionality

Create and
Prioritize User
Stories

• GithubTickets

• Acceptance
Tests

Present User
Stories to Team

• List of User
Stories that
the Team will
tackle

Reiterate every Sprint

Scrum — Software Engineering II

Project Workflow: Developers

November 15, 2018 42

Estimate User
Story Effort

(Planning Poker)

Create and
Estimate Tasks
per User Story

Create Unit Test &
Implement Task

Push
Feature

Update Tickets,
Create

Documentation

Repeat until
Feature is finished,
Run tests frequently

Done and sprint is not over, yet?

■ Help your teammates

■ Refactor, write tests, document

■ Ask the Product Owner

for more work

Scaling Scrum

Scrum — Software Engineering II

Recap: SWTII High-level Overview

November 15, 2018 44

Scrum — Software Engineering II

What’s needed in such an environment?

■ Development process

■ Communication on multiple levels

■ Infrastructure for collaboration

Implications of the Setup

November 15, 2018 45

Scrum — Software Engineering II

Start small and grow organically

■ Single Scrum (teaching) team for preparation

■ Work out foundation for the first sprints

■ Scale when it becomes necessary

We are now at the first scaling point

■ SWT II participants take over!

Scaling Scrum: Project Start

November 15, 2018 46

Scrum — Software Engineering II

Product Owner / Backlog Hierarchy

November 15, 2018 47

[Christoph Mathis, Scrum Center]

Main
Product Backlog

Chief
Product Owner

PO Team A

PO Team B

PO Team C

Update at the end of each sprint to
consolidate team results

Team
Product Backlogs

Just-in-time update
before the

synchronized planning

Scrum — Software Engineering II

■ Preparation

□ Individual review and retrospection meetings

□Meeting of all teams with 1-2 members each:

– Review of the last sprint

– Input dependencies (What is needed)

– Output dependencies (What needs to be delivered)

■ Execution

□ Individual plannings (strict timeboxing)

□Discussion of identified additional input or output dependencies

□ Final sprint planning

■ Problem: Time consuming & high degree of coordination needed!

Scaling Scrum: Sprint Planning

November 15, 2018 48

Scrum — Software Engineering II

Another Option: Co-located planning

Scaling Scrum: Sprint Planning

November 15, 2018 49

One Room

Team 1

Team 2

Team 3

Team 4

POs

Team 6

Team 5

Team 7

Team 8

Scrum — Software Engineering II

Goal: Synchronize team effort with minimal coordination overhead

■ Regular meeting of all Scrum masters.

□ Developers join if necessary (ambassador principle)

■ Scrum masters

□ Share their learnings

□ Report completions & next steps

□ Coordinate inter-team dependencies

□ Negotiate responsibility

■ Developers discuss technical interfaces across teams

■ Distribute information back into the teams

Scrum of Scrums

November 15, 2018 50

Questions?

1. The Case for Agile

2. The Scrum Process

3. Scaling Scrum

Scrum

Scrum — Software Engineering II

Image Credits

November 15, 2018 52

▪ “ST vs Gloucester - Match – 23” by PierreSelim (CC BY SA 3.0) via Wikimedia Commons
▪ “Scrum process” by Lakeworks. (CC BY SA 3.0) via Wikimedia Commons
▪ “Wien - Seestadt, SW-Areal 2013 (2)” by Bwag (CC BY SA 3.0) via Wikimedia Commons
▪ “Planning Poker! I‘ve a straight flush!“ by Joel Bez (CC BY 2.0) via flickr
▪ “Rubbermaid FastTrack Garage Organization System“ by Rubbermaid Products (CC BY 2.0) via flickr

Scrum — Software Engineering II

■ Practical Scrum Exercise

■ 09:15

■ Room D.E-9/10,

D-School building,

next to Villa

Next: Scrum Exercise

November 15, 2018 53

