
Project Management Tips

Christoph Matthies (christoph.matthies@hpi.de)

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2018/19

Image by Josar Photos (CC BY-NC-ND 2.0)

Tips & Tricks — Software Engineering II

Agenda

1. Value-based Software Engineering

■ Requirements Prioritization

■ Minimum Viable Product

2. Organizing your Project

3. Git Tricks

December 14, 2018 2

Tips & Tricks — Software Engineering II

Value-based Software Engineering

■ "Requirements are often analyzed in a value-neutral environment" [1]

□ "Earned value" systems track project cost and schedule, not stakeholder value

□ "separation of concerns": developers only turn requirements into verified code

■ 80% of the value is expressed in 20% of the requirements (Pareto principle) [2]

■ A value-oriented approach is more appropriate

3
[1] Barry Boehm. 2003. Value-based software engineering: reinventing. SIGSOFT Software Engineering Notes 28, 2. DOI: 10.1145/638750.638775

[2] Koch, Richard. 1998. The 80/20 Principle : the Secret of Achieving More with Less. New York: Doubleday. ISBN 9780385491747.

■ How to do that?

□ Identify the system's success-critical stakeholders

□ Obtain their value propositions with respect to the system

□ Estimate / find out value of a requirement to the stakeholders

□ Estimate effort to implement a requirement

Tips & Tricks — Software Engineering II

MoSCoW Prioritization

4

Reach common understanding with stakeholders on

the importance of delivering each requirement

Dai Clegg, Richard Barker. 1994. Case Method Fast-Track: A RAD Approach.
Addison-Wesley. ISBN 978-0-201-62432-8.

MoSCoW: Must have, Should have, Could have, and Won't have

■ Description instead of high, med and low

■ Get customers to better understand the impact of setting a priority

■ Try to deliver all the Must haves, Should haves and Could haves

■ Should haves and Could haves will be removed first

if plan for delivery is threatened

Tips & Tricks — Software Engineering II

MoSCoW Prioritization

5

Must have

■ Critical for success of delivery

■ If only a single Must have is missing, project delivery is considered a failure

Dai Clegg, Richard Barker. 1994. Case Method Fast-Track: A RAD Approach.
Addison-Wesley. ISBN 978-0-201-62432-8.

Should have

■ Important, but not necessary for delivery in the next iteration

■ Can be as critical as Must haves, maybe not as time-sensitive or workaround exist

Could have

■ Desirable, but not necessary. Included if time and resources permit

■ Could improve customer satisfaction for little development cost

Won't have (this time)

■ Lowest-payback items or not appropriate at this time

■ Not planned into the schedule for the next delivery. Outside of current scope.

■ Either dropped or reconsidered for inclusion in a later timebox

Tips & Tricks — Software Engineering II

MoSCoW Prioritization

6

Criticism

■ Lack of reason

□ Why is a requirement Must have and not Should have?

□ Why is this requirement Won't have?

■ Lack of time information

□ Are Won't have requirements not in this delivery or never?

■ Dealing with technical debt

□ What priority does refactoring have?

□ What about bux fixes?

Wiegers, Karl; Beatty, Joy (2013). Software Requirements. Washington, USA: Microsoft Press. pp. 320–321.

Tips & Tricks — Software Engineering II

Value-based Requirements Prioritization

7

Idea

■ Plot requirements on the

dimensions of value and effort

■ Implement: Above 2x

■ Skip: Below 1/2x

■ In-between: Review

Challenges

■ Whole truth?

■ Beware of dependencies!

■ Keep in sync

Tips & Tricks — Software Engineering II

Value-based Requirements Prioritization

8

Lean Startup 2x2 Matrix

■ Do first: Quick Wins

■ Do second: Big Bets

■ Think about Maybes

■ Try to avoid Time Sinks

Value

Effort
Low High

High

Pavel Kukhnavets. 24.04.2018. Value/Effort Matrix: Lean Prioritization for Product Managers.
https://hygger.io/blog/lean-prioritization-approach-ongoing-pm-issues/

Tips & Tricks — Software Engineering II

Minimum Viable Product (MVP)

Product with just enough features to satisfy early customers,

and to provide feedback for further development.

9Author/Copyright holder: Jussi Pasanen. With acknowledgements to Aarron Walter, Ben Tollady, Ben Rowe, Lexi Thorn and Senthil Kugalur. Copyright terms and
license: All rights reserved. Source: https://www.interaction-design.org/literature/article/minimum-viable-product-mvp-and-design-balancing-risk-to-gain-reward

Tips & Tricks — Software Engineering II

MVP (Dis-)Advantages

10

Advantages

■ Early user feedback

□ Test initial understanding of user needs, test product hypothesis

□ Limited resources spent on MVP

■ Move into production early

□ Software is developed for a reason, solve a problem!

□ Generate revenue

□ Entering a market first can be a competitive advantage

Challenges

■ Definition of minimally viable (why?)

□ Smallest possible way to meet the market need with a useful output

□ Requires smart requirements management

■ Requires early focus on usability, deployment, support, marketing

Tips & Tricks — Software Engineering II

MVP Contexts

11

"Minimum Viable Product" is used in many contexts.

Some possible variants:

■ Marketing MVP

□ Product to test the market that is being targeted

□ Check demand assumptions

■ Technical Demonstration MVP

□ Prototype or proof-of-concept

□ Explore software designs

□ Prove that it will work using the technology

■ "Must-Haves" MVP

□ Product with only "the most important features"

□ Might not be truly minimal in terms of effort

□ Smaller version of full software? Is the main goal feedback collection?

Allan Kelly, Allan Kelly Associates, https://techbeacon.com/mvp-broken-its-time-restore-minimum-viable-product

Tips & Tricks — Software Engineering II

Agenda

1. Value-based Software Engineering

2. Organizing your Project

■ Scrum Burn-Down Chart

■ Communication

■ Dealing with Dependencies

■ Estimating Large Backlogs

■ Beyond Scrum

3. Git Tricks

4. Outlook

December 14, 2018 12

Tips & Tricks — Software Engineering II

Organizing your Project

Questions:

■ Which stories are part of Sprint#1?

■ Who is working on which tasks?

■ Which version is a good one that can be shown to the customer?

Tools that might help:

■ Put your user stories & tasks into Github's issue tracker

□ Assign issues to developers

□ Use milestones to assign user stories to sprints

□ Use issue tags, e.g. to denote responsible teams or status

□ Use "project management" tools that give an overview of GH issues,
e.g. https://waffle.io/ or https://www.zenhub.io/

■ Tag versions that can be presented

13
$ git tag –a v0.1 –m 'version after Sprint#1 without US #2'

https://waffle.io/
https://www.zenhub.io/

Tips & Tricks — Software Engineering II

Scrum Burn-Down Chart

■ Graphical representation of work left to do versus time

■ X-Axis: sprint timeline, e.g. 10 days

■ Y-Axis: work that needs to be completed in sprint (time or story points)

■ "Ideal" work remaining line: straight line from start to end

■ Actual work remaing line

□ above ideal → behind schedule, below ideal → ahead schedule

14Image: I8abug (CC BY-SA 3.0)

https://en.wikipedia.org/wiki/Burn_down_chart

Tips & Tricks — Software Engineering II

Scrum Boards – Virtual vs. Real-Life

15

Tips & Tricks — Software Engineering II

■ …?

How do I know when to stop?

■ Acceptance criteria fulfilled

■ All tests are green

■ Code looks good

■ Objective quality goals

■ Second opinion

■ Internationalization

■ Security

■ Documentation

The Definition of Done is the team’s consensus

of what it takes to complete a feature.

Definition of Done

16December 14, 2018

Tips & Tricks — Software Engineering II

Definition of Ready

December 14, 2018Tips & Tricks — Software Engineering II 17

■ Similar to Definition of Done, but for user stories

■ Answer the question: When is a user story ready for implementation?

Examples

■ Estimated

■ Acceptance criteria

■ Mockups for UI stories

Tips & Tricks — Software Engineering II

Communication

Questions:

■ How do we communicate in and between teams?

■ How do I find out about architecture changes?

■ How do I know how to use other people's code?

Tools that might help:

■ Github wiki to (briefly!) document how to use components

■ Code comments explaining the larger context, common pitfalls

■ One(!) common communication channel for announcing changes,

e.g. E-Mail list, IRC, IM, Slack, Google Hangouts, Facebook group

18Image: Abstruse Goose (CC BY-NC 3.0 US)

http://abstrusegoose.com/432

Tips & Tricks — Software Engineering II

Dealing with Dependencies
Ambassadors

■ Mutual Exchange of team members

□ Improves efficiency of communications

□ Allows deeper understanding of problems

□ Prevents coordination problems early in the process

■ Ambassadors should be fully integrated team members

■ Especially useful for API development, design, etc.

19[Pichler, Scrum – Agiles Projektmanagement erfolgreich einsetzen, 2007]

Tips & Tricks — Software Engineering II

Dealing with Uncertainty
Spikes

What can we do if no team members lack knowledge in a particular domain?

■ Hard to estimate with little knowledge

■ Take time out of the sprint to research and learn

■ Spike

■ For example, evaluate new technologiess

20

Tips & Tricks — Software Engineering II

Estimating Large Backlogs (1/2)

Bucket Estimation (Jukka Lindström) [Scrumcenter, 2009]

■ Create physical buckets based on examples (2-3 per bucket)

■ Assign items to buckets one by one through

□ Comparing & discussing

□ Planning Poker

21

Tips & Tricks — Software Engineering II

Estimating Large Backlogs (2/2)

Affinity Estimation (Lowell Lindstrom) [Scrumcenter, 2009]

■ Read each story to the entire team

■ Arrange stories horizontally based on size (no talking!)

■ Place Fibonacci numbers above the list

■ Move each story to the preferred number

22

Tips & Tricks — Software Engineering II

Beyond Scrum

23

Scrum critique:

■ Scrum and agile are by no means universally accepted as "the way" to do

software engineering (“Agile Hangover”)

■ Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

□ Business-driven engineering — Scrum increases the feedback frequency while

giving engineers no real power

□ Terminal juniority — Architecture and R&D and product development aren’t

part of the programmer’s job

□ It’s stupidly, dangerously short-term — engineers are rewarded or punished

solely based on the completion, or not, of the current two-week “sprint”

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

Tips & Tricks — Software Engineering II

Agenda

1. Value-based Software Engineering

2. Organizing your Project

3. Git Tricks

December 14, 2018 24

Tips & Tricks — Software Engineering II

Git Tricks — amend, interactive staging

25

$ git commit --amend -m "new message"

Change commit message of previous commit
(Careful, don't do this if you already pushed the commit)

$ git add [missing files]
$ git commit --amend #uses the previous commit's message

Forgot to commit files?

$ git reset --soft HEAD@{1}
$ git commit -C HEAD@{1}

Undo the amending

Interactive staging (also allows committing only parts of files)
$ git add -i
$ git add --patch [file]

Tips & Tricks — Software Engineering II 26

$ git stash
$ git stash pop

Temporarily store/retrieve all modified tracked files

$ git stash list

List all stashed changesets

What did I work on recently?
Show differences that are not staged yet
$ git diff

Shows differences between staging and the last file version

$ git diff --staged

Git Tricks — reflog, diff, stash

$ git reflog

Log of all recent actions

Tips & Tricks — Software Engineering II 27

$ git log --abbrev-commit --pretty=oneline

Show changesets in the log

Shorter version of the git log

$ git log -p

Show pretty graph of git history
$ git log --graph --decorate --pretty=oneline --abbrev-commit

$ git rebase <branch>

History is becoming cluttered with merge commits

Git Tricks — log, blame, rebase

$ git blame --date=short [file]

Show what revision and author last modified each line

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Tips & Tricks — Software Engineering II

Git Rebase — setup

28

■ Created "experiment" branch

to try something out

■ Easiest way to integrate the branches is merge

□ Will create merge commits

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)

$ git checkout master
$ git merge experiment

$ git checkout –b "experiment"
$ git commit –a –m "C3"

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Tips & Tricks — Software Engineering II

Git Rebase — execution

29

■ git rebase

□ Take all the changes that were committed on

one branch and replay them on another one

□ Only do this with local commits

$ git checkout experiment
$ git rebase master

■ Afterwards: fast-forward the master branch

□ No merge commits

$ git checkout master
$ git merge experiment

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Tips & Tricks — Software Engineering II

Git cherry-pick

30

■ Problem: Quickly get changes from other commits

without having to merge entire branches

■ git cherry-pick

□ apply the changes introduced

by existing commits

$ git checkout master
$ git log --abbrev-commit --pretty=oneline
d7ef34a C3: Implement feature
0be778a C4: critical change introduced

C0 C1 C2

CA

C3

CB

C4 C5

C4

critical
change

master

experiment

$ git checkout experiment
$ git cherry-pick 0be778a

https://git-scm.com/book/en/v1/Git-Branching-Rebasing (MIT)

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Tips & Tricks — Software Engineering II

Ideas

■ Never merge in master or release branches

■ Never break build in shared branches

Branching

December 14, 2018 31http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

Tips & Tricks — Software Engineering II

Git Self-help Resources

32

■ How to undo (almost) anything with git – guide by Github

□ https://github.com/blog/2019-how-to-undo-almost-anything-with-git one

■ Git cheat sheet – by Github

□ https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

■ Git FAQ – answers to common questions
□ http://gitfaq.org/

□ https://git.wiki.kernel.org/index.php/Git_FAQ

■ Git pretty – troubleshooting flowchart

□ http://justinhileman.info/article/git-pretty/

https://github.com/blog/2019-how-to-undo-almost-anything-with-git
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
http://gitfaq.org/
https://git.wiki.kernel.org/index.php/Git_FAQ
http://justinhileman.info/article/git-pretty/

Tips & Tricks — Software Engineering II

Tooling suggestions

33

■ Many GUIs for git available (https://git-scm.com/downloads/guis)

□ Make some complex git interactions much simpler

□ Draw pretty commit graphs, overviews of branches and merges

□ GitX, TortoiseGit, SourceTree, Tower, SmartGit, gitg, git-cola

■ Github Integration

□ Github also provides git tools
https://mac.github.com/, https://windows.github.com/

■ Git extras (https://github.com/tj/git-extras)

■ Common git commands bundled

https://git-scm.com/downloads/guis
https://mac.github.com/
https://windows.github.com/
https://github.com/tj/git-extras

