Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Project Management Tips

Software Engineering |l
WS 2019/20 Enterprise Platform and Integration Concepts

Image by Josar Photos (CC BY-NC-ND 2.0)

Agenda

1. Value-based Software Engineering
m Requirements Prioritization
m Minimum Viable Product

2. Organizing your Project

3. Git Tricks

Tips & Tricks — Software Engineering |

Value-based Software Engineering E

m "Requirements are often analyzed in a value-neutral environment" [1]

0 Tracking of project cost and schedule, not stakeholder value

0 Developers write code that fulfills requirements (exactly?)
m 80% of the value is expressedin 20% of the requirements (Pareto principle) [2]
m A stakeholder value-oriented approach is more appropriate

m How todo that?
0 ldentify the system's success-critical stakeholders
0 Obtain their value propositions with respect to the system
0 Estimate/ find out value of a requirement to the stakeholders
0 Estimate effort to implement a requirement

[1] Barry Boehm. 2003. Value-based software engineering: reinventing. SIGSOFT Software Engineering Notes 28, 2. DOI: 10.1145/638750.638775
[2] Koch, Richard. 1998. The 80/20 Principle : the Secret of Achieving More with Less. New York: Doubleday. ISBN 9780385491747. 3

Tips & Tricks — Software Engineering |

MoSCoW Prioritization

Reach common understanding with stakeholders on
the importance of delivering each requirement

MoSCoW: Must have, Should have, Could have, and Won't have

Description instead of high, med and low
Get customersto better understand the impact of setting a priority
Try to deliver all the Must haves, Should haves and Could haves

Should haves and Could haves will be removed first
if plan for delivery is threatened

Dai Clegg, Richard Barker. 1994. Case Method Fast-Track: A RAD Approach.

Tips&Tricks — Software Engineering” AddiSOﬂ-WGSley. ISBN 978‘0‘201‘62432'8.

MoSCoW Prioritization

Must have

m Critical for success of delivery

m If only a single Must have is missing, project delivery is considered a failure

Could have

m Desirable, but not necessary. Included if time and resources permit

m Could improve customer satisfaction for little development cost

Should have

m Important, but not necessary for delivery in the next iteration

m Can be as critical as Must haves, maybe not as time-sensitive or workaround exist

Won't have (this time)
m Lowest-payback items or not appropriate at this time
m Not planned into the schedule for the next delivery. Outside of current scope.

m Either dropped or reconsidered for inclusion in a later timebox

Dai Clegg, Richard Barker. 1994. Case Method Fast-Track: A RAD Approach.
Tips&Tricks — Software Engineering” AddiSOﬂ-WGSley. ISBN 978‘0‘201‘62432'8.

MoSCoW Prioritization

Criticism
m Lack of reason
0 Why is a requirement Must have and not Should have?
0 Why is this requirement Won't have?
m Lack of time information
0 Are Won't have requirements not in this delivery or never?
m Dealing with technical debt
0 What priority does refactoring have?
0 What about bux fixes?

Wiegers, Karl; Beatty, Joy (2013). Software Requirements. Washington, USA: Microsoft Press. pp. 320-321.

Tips & Tricks — Software Engineering |

Value-based Requirements ﬂ
Prioritization

Value A fix) = 2x Idea

m Plot requirementson the
dimensions of value and effort

m Implement: Above 2x

m Skip: Below 1/2x

m In-between: Review

Challenges

m Whole truth?

m Beware of dependencies!
m Keep insync

o
Effort

Tips & Tricks — Software Engineering |

Value-based Requirements Prioritization W

High‘
n B Lean Startup 2x2 Matrix
ek tine Ple bets m Do first: Quick Wins
Value m Do second: Big Bets
m Think about Maybes
n m Try toavoid Time Sinks
Low Effort High

Pavel Kukhnavets. 24.04.2018. Value/Effort Matrix: Lean Prioritization for Product Managers.
Tips & Tricks — Software Engineeringll ttps://hygger.io/blog/lean-prioritization-ap proach-ongoing-pm-issues/

Minimum Viable Product (MVP)

Product with just enough features to satisfy early customers,

and to provide feedback for further development.

s M

Functional Functional

Author/Copyright holder: Jussi Pasanen. With acknowledgements to Aarron Walter, BenTollady, Ben Rowe, Lexi Thorn and Senthil Kugalur. Copyright terms and 9
Tips & Tricks — Software Engineeringll license: All rights reserved. Source: https://www.interaction-design.org/literature/article/minimum-viable-product-mvp-and-design-balancing-risk-to-gain-reward

MVP (Dis-)Advantages

Advantages

m Earlyuser feedback
0 Testinitial understanding of user needs, test product hypothesis
0 Limited resources spent on MVP

m Move into production early
0 Software is developed for a reason, solve a problem!
0 Generate revenue
0 Entering a market first can be a competitive advantage

Challenges
m Definition of minimally viable (why?)
0 Smallest possible way to meet the market need with a useful output
0 Requires smart requirements management
m Requires early focus on usability, deployment, support, marketing

Tips & Tricks — Software Engineering |

10

MVP Contexts

"Minimum Viable Product” is used in many contexts.
Some possible variants:

m Marketing MVP
0 Product to test the market that is being targeted
0 Check demand assumptions
m Technical Demonstration MVP
0 Prototype or proof-of-concept
0 Explore software designs
0 Prove that it will work using the technology
m "Must-Haves" MVP
0 Product with only "the most important features"
0 Might not be truly minimal in terms of effort
o Smaller version of full software? Is the main goal feedback collection?

Tips & Tricks — Software Engineeringll Allan Kelly, Allan Kelly Associates, https://techbeacon.com/mvp-broken-its-time-restore-minimum-viable-product 1 1

Agenda

1. Value-based Software Engineering
2. Organizing your Project
m Scrum Burn-Down Chart
m Communication
m Dealing with Dependencies
m Estimating Large Backlogs
m Beyond Scrum
3. Git Tricks
4. Outlook

Tips & Tricks — Software Engineering |

12

Organizing your Project

Questions:

m Which stories are part of Sprint#1?
m Who is working on which tasks?

m Which version is a good one that can be shown to the customer? gge note:
When assigning tickets to
Tools that might help: devs it's helpful ‘(‘; .
i : : : ernames are identill
m Putyour user stories & tasks into Github's issue tracker ‘(’; there is some info on
O Assign issues to developers the profile).

mwho is ,gronkh12°
Use milestones to assign user stories to sprints again?"

O
0 Useissue tags, e.g. to denote responsible teams or status
O

Use "project management" tools that give an overview of GH issues,
e.g. GitHub Projects, waffle.io or zenhub.io

m Tag versions that can be presented

$ git tag—a v0.1—m 'version after Sprint#1 without US #2'

Tips & Tricks — Software Engineering | 1 3

Scrum Burn-Down Chart

3o

Start
70

15

10

Sum of Task Estimates (days)

] a] 10
teration Timeline (days)

Project X¥Z keration 1 Burn Down

14

20

M Icieal Tazks Remaining
B Actual Tazks Remaining

End

X-Axis: sprint timeline, e.g. 10 days

Actual work remaing line

O above ideal: behind schedule, below ideal: ahead schedule

Tips & Tricks — Software Engineering |

Graphical representation of work left to do versus time

Y-Axis: work that needs to be completedin sprint (time or story points)
"Ideal” work remaining line: straight line from start to end

Image:18abug (CC BY-SA 3.0) 1 4

https://en.wikipedia.org/wiki/Burn_down_chart

p— 2 - -
S
- [] \)'. Lad B 3h Prarvn s (;‘::ﬂ—\‘ YT O s
o ' Lenain - T . "
— M.—..-,'-J e - ey ahal
aldw e Mardas AN 3 '(99 &
- N TS st Sty 2
ohas Ny ‘.‘|.,-3 5 | M
Dy = ° . 4.—';.“‘14
A e T e ,
o "1 A MLiesl) W . :
C U0 0 D> dawa Wd\‘;{/\ \-1.__._ ' :
O 20 iy @B Shama AtE s
- ‘bkq-!‘ m&ofﬁ«-.umntm =
R S e ey Lo, nd 4\1\0‘7,‘1\ s
2 D.ra F‘J.‘:‘W xf_u‘\vr\‘-‘ T
: 5 PRIV L — s
0 33 3-3,\\4.\“ i Pt
a2 3 = FEN O ‘:’;{ ke = -
323 i3t Yordas saer
> as » ‘ Sty

‘HIIIIHIIHHI“"“" \’ I“l\\\ll\\\\lll\\/

4 ceww

Definition of Done

How do | know when to stop?
Acceptance criteria fulfilled
All tests are green

Code looks good

Objective quality goals
Second opinion
Internationalization
Security

Documentation

The Definition of Done is the team’s consensus
of what it takes to complete a feature.

Tips & Tricks — Software Engineering |

16

Definition of Ready

m Similar to Definition of Done, but for user stories
m Answer the question: When is a user story ready for implementation?

Examples

m Estimated

m Acceptancecriteria

m Mockups for Ul stories

Tips & Tricks — Software Engineeringll

17

Communication E

Questions:
. . WHERE couLD THIS BRIDGE THIS <ICN DOESN'T
m How do we communicatein and between teams? | Fossieer wese? || Heee e noen.
m How do | find out about architecture changes? |
m How do | know how to use other people's code?

Tools that might help:
m Github wiki to (briefly!) document how to use components
m Code commentsexplaining the larger context, common pitfalls
m One(!) common communication channel for announcing changes,
e.g. E-Mail list, IRC, IM, Slack, Google Hangouts, Facebook group

Tips & Tricks — Software Engineering I Image: Abstruse Goose (CCBY-NC 3.0 US) 1 8

http://abstrusegoose.com/432

Dealing with Dependencies ﬂ
Ambassadors

28~ a8
a a

m Mutual Exchange of team members
0 Improves efficiency of communications
0 Allows deeper understanding of problems
0 Prevents coordination problems early in the process

m Ambassadors should be fully integrated team members
m Especially useful for APl development, design, etc.

Tips & Tricks — Software Engineering | [Pichler, Scrum — Agiles Projektmanagement erfolgreich einsetzen, 2007] 1 9

Dealing with Uncertainty
Spikes

What can we do if no team members lack knowledge in a particular domain?
m Hard to estimate with little knowledge

m Take time out of the sprint to research and learn
m Spike
m Forexample, evaluate new technologiess

Tips & Tricks — Software Engineering |

20

Estimating Large Backlogs (1/2)

Bucket Estimation (Jukka Lindstrom) [Scrumcenter, 2009]
m Create physical buckets based on examples (2-3 per bucket)
m Assignitems to buckets one by one through

0 Comparing & discussing

0 Planning Poker

i

i
|
i.

===

‘!
)

1
|
l
|
|
|

|
il
i1

L

li;
|
i

|
|
!

-
’
I
et
.

.i’_»_
i
ii
|

I 1M1

Tips & Tricks — Software Engineeringl|

21

Estimating Large Backlogs (2/2)

Affinity Estimation (Lowell Lindstrom) [Scrumcenter, 2009]
m Read each story to the entire team
m Arrange stories horizontally based on size (no talking!)

m Place Fibonacci numbers above the list

m Move each story to the preferred number

Tips & Tricks — Software Engineering |

XS

Smaller

XL

] .
)y
.]

-
]]

22

Beyond Scrum ﬂ

Scrum critique:
m Scrum and agile are by no means universally accepted as "the way" to do
software engineering (“Agile Hangover”)

m Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

O Business-driven engineering — Scrum increases the feedback frequency while
giving engineers no real power

0 Terminal juniority — Architecture and R&D and product development aren’t
part of the programmer’s job

O It’s stupidly, dangerously short-term — engineers are rewarded or punished
solely based on the completion, or not, of the current two-week “sprint”

Tips & Tricks — Software Engineering | 2 3

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

Agenda

1. Value-based Software Engineering
2. Organizing your Project
3. Git Tricks

Tips & Tricks — Software Engineering |

24

Git Tricks — amend, interactive staging

Change commit message of previous commit
(Careful, don't do this if you already pushed the commit)

$ git commit--amend -m "new message"

Forgot to commit files?

$ git add [missing files]
$ git commit--amend #uses the previous commit's message

Undo the amending

$ git reset --soft HEAD@{1}
$ git commit-C HEAD@{1}

Interactive staging (also allows committing only parts of files)
$ git add -i

$ git add --patch [file]

Tips & Tricks — Software Engineeringl|

<

Opinion:

Interactive staging
(git add =i,

is probably the most
powerful git feature
you're not using yet.

Git Tricks — reflog, diff, stash

Log of all recent actions
$ git reflog

What did | work on recently?
Show differences that are not staged yet

$ git diff

Shows differences between staging and the last file version
$ git diff

--staged

Tip: '

it stash is ofte|n
helpful if you don't

Temporarily store/retrieve all modified tracked files

$ git stash want to directly
$ git stash pop commit your changes,
but need to checkout
List all stashed changesets another

branch/commit.

$ git stash list

Tips & Tricks — Software Engineeringl|

Git Tricks — log, blame, rebase ﬂ

Shorter version of the git log

$ git log --abbrev-commit --pretty=oneline

Show pretty graph of git history

$ git log --graph --decorate --pretty=oneline --abbrev-commit

Show changesetsin the log

$ gitlog-p '

Show what revision and author last modified each line Warning: .
Do not rebase commits
$ git blame --date=short [file] that others have worked
with!

"neople will hate you, and

i i : : . .|l be scorned by friends
History is becoming cluttered with merge commits)Cl,(,)f,dfamily."

1 tps: o -
$ git rebase <branch> E@MME’W
Rebasing

Tips & Tricks — Software Engineeringl|

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Git Rebase — setup

m Created "experiment" branch
to try something out

$ git checkout —b "experiment"
$ git commit—a—-m "C3"

m Easiest way to integrate the branches is merge

0 Will create merge commits

$ git checkout master

$ git merge experiment

Tips & Tricks — Software Engineering |

experiment

Cc3

=20

master

exXperiment

-

masier

om 28

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Git Rebase — execution

m git rebase
0 Take all the changes that were committed on
one branch and replay them on another one

0 Only do this with local commits

C3

experiment

$ git checkout experiment

$ git rebase master

m Afterwards: fast-forward the master branch
0O No merge commits

!

master

experiment

$ git checkout master

$ git merge experiment

Tips & Tricks — Software Engineeringl|

'

masier

om 29

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

Git cherry-pick

m Problem: Quickly get changes from other commits

without having to merge entire branches
m git cherry-pick
0 apply the changes introduced
by existing commits

$ git checkout master
$ git log --abbrev-commit --pretty=oneline

d7ef34a C3: Implement feature
Obe778a C4: critical change introduced

$ git checkout experiment

$ git cherry-pick Obe778a

Tips & Tricks — Software Engineeringl|

experiment

master

https://git-scm.com/book/en/v1/Git-Branching-Rebasing

release
branches hotfixes

feature

Branching

master

Ideas
m Never mergein master or release branches
m Never break build in shared branches

Tips & Tricks — Software Engineering I http://nvie.com/posts/a-successful-git-branching-model/

31

http://nvie.com/posts/a-successful-git-branching-model/

Git Self-help Resources ﬂ

m How to undo (almost) anything with git — guide by Github

O https://github.com/blog/2019-how-to-undo-almost-anything-with-git one
m Git cheat sheet — by Github

O https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

m Git FAQ—answers to common questions

0 http://gitfaqg.org/
O https://git.wiki.kernel.org/index.php/Git FAQ

m Git pretty —troubleshooting flowchart
0 http://justinhileman.info/article/git-pretty/

Split off a logical chunk
from your mess, stage it,
and commit it with a

32

Tips & Tricks — Software Engineering |

https://github.com/blog/2019-how-to-undo-almost-anything-with-git
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
http://gitfaq.org/
https://git.wiki.kernel.org/index.php/Git_FAQ
http://justinhileman.info/article/git-pretty/

Tooling suggestions

m Many GUIs for git available (https://git-scm.com/downloads/guis)

0 Make some complex git interactions much simpler
0 Draw pretty commit graphs, overviews of branches and merges
0O GitX, TortoiseGit, SourceTree, Tower, SmartGit, gitg, git-cola

m Github Integration

0 Github also provides git tools
https://mac.github.com/, https://windows.github.com/

m Git extras (https://github.com/tj/git-extras)

m Common git commands bundled

Tips & Tricks — Software Engineering |

33

https://git-scm.com/downloads/guis
https://mac.github.com/
https://windows.github.com/
https://github.com/tj/git-extras

