
Application Deployment

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2019/20

Datacenter Work by Leonardo Rizzi (CC BY-SA 2.0)



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

2



Application Deployment — Software Engineering II 

Development vs. Operations

3

Users

Production
Current Release

Dev A

Dev B

Repository
All Code

Development
Working Copy

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Application Deployment — Software Engineering II 

Problems

■ Software needs to be operated, run in production, and maintained

□ Developers vs. Admins

■ Short development and deployment cycles

■ Maintain quality standards

Development & Operations

4

Customer Devs Admins

Agile DevOps

“Agile for deployment”

DevOps

■ Formalized process for deployment

■ Focus on communication, collaboration, 

and integration between Dev and Ops



Application Deployment — Software Engineering II 

Definition

■ Fairly recent trend

■ "[...] no uniform definition for […] DevOps.

[…] people use their own definitions" [Dyck, 2015]

■ "There is no consensus of what concepts DevOps covers,

nor how DevOps is defined" [Erich, 2017]

■ Best practices to

shorten the application development life cycle

DevOps

5

[Dyck, 2015] Dyck, Andrej; Penners, Ralf; Lichter, Horst (19 May 2015). "Towards Definitions for Release Engineering and DevOps".
Proceedings of the 2015 IEEE/ACM 3rd International Workshop on Release Engineering. IEEE.

[Erich, 2017] Erich, F.M.A.; Amrit, C.; Daneva, M. (June 2017). "A Qualitative Study of DevOps Usage in Practice". Journal ofSoftware: Evolution and Process. 29 (6).

Image: Dzonatas (CC BY-SA 3.0), https://commons.wikimedia.org/wiki/File:SDLC-Maintenance-Highlighted.png



Application Deployment — Software Engineering II 

Not DevOps

6

Dev A

Dev B

Users

Repository
All Code

Development
Working Copy

Production
Current Release

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Application Deployment — Software Engineering II 

Release

■ Planned state of the application

■ Set of requirements

■ Examples

□ Next big version with new shiny features

□ Urgent hotfix

□ Anything in-between

Version

■ Could be anything

■ A release has a version number

Terminology

7



Application Deployment — Software Engineering II 

Build

■ Attempt to implement a release

□ Snapshot of application

■ Often the output of the build tool

□ Not: the build script/tool/process

■ Version number is 

“<Release Number>.<Build Number>”

Terminology

8



Application Deployment — Software Engineering II 

Environment

■ A system on which the application 

can be deployed and used

To promote

■ To deploy a build on the next environment

To release

■ To promote a build to production

■ Thereby finishing the release

Terminology

9



Application Deployment — Software Engineering II 

Overview of Environments

Development
managed by developers

Development

■ Where the developers work

■ One per developer (if possible)

Integration

■ Runs all tests

■ A try-out version

Quality Assurance

■ Professional manual testing

Operations
managed by admins

Staging

■ Clone of production system

■ Final rehearsal

10

Production

■ The live system

■ Failures are expensive here



Application Deployment — Software Engineering II 

Example

11

Release 3.7

Integration Quality Assurance Staging Production

Build 5Build 5 Build 5

Build 2



Application Deployment — Software Engineering II 

Example

12

Release 3.7

Integration Quality Assurance Staging Production

Build 5

Build 2

Build 5Build 5

Build 6Build 7Build 8

Build 7

Developers
changing Code



Application Deployment — Software Engineering II 

Workflow

Promote & Test

13

Define Release

Promote & Test

Change Code

Assemble Build

Promote & Test Release
AcceptReject



Application Deployment — Software Engineering II 

DevOps

14

Dev A

Dev B

Admins Users

Integration
Latest Build

Repository
All Code Quality Assurance

Latest Build/
Release Candidate

Staging
Current Release/
Release Candidate

Production
Current Release

Quality 
Assurance

Project Team/
Project Lead

Development Operations

Development Data
Test Data
Production Data

Code
Build

Development
Working Copy

Development
Working Copy



Application Deployment — Software Engineering II 

Builds are immutable

■ If changed, previous testing was pointless

□ Even the smallest change has to go through all environments

Many systems required

■ Each environment has to be maintained

■ Automation?

Deployment overhead

■ Manual steps are potential for human failure

■ Automation?

Implications

15

Remainder of this lecture



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

16



Application Deployment — Software Engineering II 

Choice of hosting options is driven by a variety of parameters

■ Initial setup effort, cost, and required expertise

■ Operational costs and effort

■ Targeted service level agreements (SLAs)

■ Legal considerations (data privacy, liability, etc.)

Application Hosting Options

17

Low Effort
Little Control

High Effort
High Control

Own
Datacenter 

PaaS IaaS
Dedicated 

Hosting



Application Deployment — Software Engineering II 

Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages

■Minimal effort and knowledge required for setup

■Only platform development knowledge (e.g. Python, Ruby) needed, 

no need for hardware / OS maintenance

■Possibility to scale up quickly and easily

Disadvantages

■Usually fixed environment with little variation points

■Provider SLA targets might differ from yours, e.g. downtime, response times

■Limited technical support

Examples: Heroku, Azure Compute, Google App Engine

Platform as a Service (Paas)

18



Application Deployment — Software Engineering II 

Providers deliver virtual private servers (VPS) with requested configuration 

Setup of execution environment, database servers, etc. is up to customers

Advantages

■Flexibility regarding execution environment

■Avoid management of underlying hardware

■Dynamic on-demand scaling of resources

Disadvantages

■Server administration know-how and efforts required

■ It’s still a VM: Potential performance drops, Disk I/O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean

Infrastructure as a Service (IaaS)

19



Application Deployment — Software Engineering II 

Providers allocate dedicated hardware, classical approach

Advantages

■Complete control over server, down to bare metal, full power always available

■No virtualization-related performance issues

■More control over network configuration

■Dedicated SLAs

Disadvantages (compared to Iaas)

■No easy scaling of resources

■Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe

Dedicated Hosting

20



Application Deployment — Software Engineering II 

You host your own servers

Advantages

■Complete control over data, security, operations, network etc.

■Custom designed servers possible

■Add cabinets in available space with low cost

Disadvantages

■Huge upfront costs, e.g. space, cooling, fiber, hardware

■Expanding the space of the datacenter is expensive

■Provide around the clock support, monitoring, personnel, etc.

■Not feasible for small companies

Examples: Google, Facebook

Own datacenter

21



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Provisioning

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

22



Application Deployment — Software Engineering II 

Setting up an Environment

23

Main challenges in preparing infrastructure:

■Minimize the effort required to repeatedly 

setup identical execution environments

■Without relying on “administration gurus”

Solutions:

■DevOps, i.e. a strong collaboration between 

the development and the operations team

■A strong bias towards automation



Application Deployment — Software Engineering II 

Where to Start With "Deploying"? 

24

■Hosted solutions aren't always feasible for initial experiments

■Maintaining local installs of server stacks

in different versions can get cumbersome 

■Development vs. production environment differences 

result in "it works on my machine" problems

■Don't want to force all developers to use

same development environment (e.g. choice of OS)

Possible solution: VirtualBox + Vagrant (https://www.vagrantup.com/)

■"Deploy" to a virtual machine on your local OS for development

http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500

https://www.vagrantup.com/
http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500


Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Provisioning

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

25



Application Deployment — Software Engineering II 

Virtualization software provides a VM.

Provisioning tools configure it, e.g. install required software.

Why not provision manually?

■Error prone, repetitive tasks

■Documentation has to be kept up-to-date

■Explicit knowledge transfer required if Admin changes

One provisioning tool example: Chef (http://chef.io, https://github.com/chef/chef)

■Formalize software install and configuration state into recipes

■Recipes are shared (https://supermarket.chef.io/cookbooks)

■Ensure software is installed based on dependencies

■Ensure that files, packages, and services are in the prescribed state

Common alternative: Puppet (https://puppetlabs.com/)

Next Step: Automate VM Config

26

http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks
https://puppetlabs.com/


Application Deployment — Software Engineering II 

Create your VM, e.g. describe it with Vagrant.

Using provisioning tools, you can:

■Define the required packages for all required servers

■ Install and configure necessary services

■Create the directory structure for your application

■Create custom configuration files (e.g., database.yml)

Not touched here but also possible:

■Use templates to create different files based on variables

■Environments (staging vs. production)

■Central management of configuration files that are automatically 

transferred to clients

Provisioning Summary

27



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

28



Application Deployment — Software Engineering II 

Necessary steps after the server is configured:

■Checkout code changes

■Update your dependencies (i.e. gems)

■Run database migrations, restart application servers

■Optional: Restart index servers, setup new Cron jobs, etc.

Remember: Automation!

■Easiest: CI solutions (e.g. Travis CI) support deploying to hosting providers

□Deploy after all the tests pass

■Alternative: Dedicated tools (e.g Capistrano in Ruby, https://github.com/capistrano/capistrano)

□Prepare the server for deployment (possibly using provisioning tools)

□Deploy the application as updates are made

How to deploy?

29

https://github.com/capistrano/capistrano


Application Deployment — Software Engineering II 

Travis CI Continuous Integration and Deployment Workflow:

Deployment with CI

30

1. before_install

2. install

3. before_script

4. script

5. after_success or 

after_failure

6. after_script

7. before_deploy

8. deploy

9. after_deploy

optional
steps

A non-zero exit-status is these phases
means the build is marked as failed.
The build is not deployed to 
the hosting provider.

Otherwise it is deployed in the 
deploy step.

http://docs.travis-ci.com/user/build-lifecycle/

■A custom after_success step can be used to deploy to own servers
(http://docs.travis-ci.com/user/deployment/custom/)

tests are
run

http://docs.travis-ci.com/user/build-lifecycle/
http://docs.travis-ci.com/user/deployment/custom/


Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

31



Application Deployment — Software Engineering II 

Keep an eye on server health and applications:

■Monitor in production, this is where errors are costly

■ Issue alerts when components fail or exceed predefined thresholds

■Examples: 

□Uptime Robot—HTTP GET / ping every 5 mins (https://uptimerobot.com/)

□Nagios—Monitor infrastructure, down to switches and services (http://nagios.org)

Monitor application errors and performance bottlenecks:

■Monitor errors that happen at runtime, discovered by users

■Notifications on application errors, slow downs

■Examples: 

□Errbit—Collect and organize errors (https://github.com/errbit/errbit)

□New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

Monitoring Servers & Applications

32

https://uptimerobot.com/
http://nagios.org
https://github.com/errbit/errbit
http://newrelic.com/


Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

33



Application Deployment — Software Engineering II 

Advantages:

■Users get a sense of “something happening” frequently, shorter feedback loop

■Business value of features immediately present

■Deploy scripts used often, less likely to contain errors

■Reduced amount of code changes per release → faster fixes, less downtime

Prerequisites/Disadvantages:

■Only feasible with extensive set of good tests

■Tests / deployment need to run fast (Continuous Integration)

■Additional training for developers (DevOps) required

■May not be feasible for applications that require planning or

long-term support (e.g. operating systems)

Deploying 50 times a day?
Continuous Delivery

34



Application Deployment — Software Engineering II 

How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):

■ Intermediate Reviews for individual stories by the PO

□At sprint review, each finished story is already running in production

□Review meetings become shorter, more of a high level overview

■Get faster feedback from stakeholders for next Scrum meeting

■Deploying to staging or testing systems becomes part of the definition of done

■Acceptance of features not only based on PO approval but stakeholder approval?

□A/B testing?

■"Working software is the primary measure of progress"—Agile Manifesto

□ Is software that is not deployed working? (DevOps)

Continuous Deployment vs. Scrum

35



Application Deployment — Software Engineering II 

Summary

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Conclusion: Automate everything!

36


