Hasso
Plattner
Institut

/R

Git Basics— Distributed Version-control

Software Engineering |
WS 2020/21 Enterprise Platform and Integration Concepts

Image by wiredforlego on flickr: https://www.flickr.com/photos/wiredforsound23/6973293967/ (CCBY-SA 2.0)

Outline

1. Basics
2. Local
3. Collaboration

Git — Software Engineeringll

THISIS GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HOU DO LEVSE IT?

NO IDEA. JUST MEMORIZE THESE SHELL
COMMANDS AND TYPE THEIM TO SYiC DR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\

1401

https://xkcd.com/1597/

Centralized vs Distributed VCS

Central Repository

Central
Repository

) \ Checkout
Commit
Update Push

User C Pull 8

User A / .
\ 8 L/: V. u58e A i

? - ' 8 AI

Git — Software Engineeringll

Centralized vs Distributed VCS

m Distributed VCS are mostly used like centralized VCS
0 Same features (branches, tags, merging)

m Local commits are a blessing and a curse
0 Commits can be made while offline
0 Higher chances of code diverging

m Pull-Requests are better than patch files

Git — Software Engineeringll

Git Objects

Blob Commit
m Content of a file m References Tree object
m Nothing else m Metadata

m 0..* parent commits

Tree Tag
m File structure m Reference to other object

m References Blobs

Git — Software Engineeringll

Commit

Blob Hello World
768903¢a03f7ccch3c6b61474188
f8e9a3bb5b

97b49d4c943e3715fe30f141cc6f27a8548 ceeOe

Tree

msg: initial

tree 97b49d4c943e3715¢f...

a3768903ca03f7ccch3c6b6f4741t88f8e9a3bb5b

Git — Software Engineeringll

Local Operations ﬂ

R
=n
—

Git — Software Engineeringll

File Status Lifecycle

Commit Parent

msg: lllnitiall’

S git commit-m “v 2.1”

Git — Software Engineeringll

Branches & Tags

msg: “Initial”

Git — Software Engineeringll

S git commit-m “v 2.1”

10

Head

Git — Software Engineeringll

msg: “Initia

|II

11

Detached Head

S git checkout v2.0

msg: “Initial”

Git — Software Engineeringll

12

Detached Head

S git checkout v2.0
S git commit -m “v 2.x”

|II

msg: “Initia

Git — Software Engineeringll

13

Detached Head

S git checkout v2.0
S git commit -m “v 2.x”
S git checkout master

List all commits:

git reflog

msg: “Initial”

14

Git — Software Engineeringll

Fast-forward

S git merge branch_b

HEAD

msg: “Initial”

Git — Software Engineeringll

msg: “Fix A”

branch_b

15

Merge

S git merge branch_b

HEAD

|II

msg: “Initia

Git — Software Engineeringll

msg: “Fix b”

branch_b

msg: “merge
branch_b”

16

Collaboration

Git — Software Engineeringll

/

alice

origin

4 N

commit a L ad Master

L4
. =R

bob

commit a € master

4

commitl

\

~

/ -

commit a

v

commitl

~

<

/

17

Push

alice$S git push origin master

Git — Software Engineeringll

alice

origin

-

commit a

commitl

IQH_I

~

-

,/

=

commit b

=
=N

commit a

commitl

N
-

v

bob

-

-

commit a

v

commitl

~

<

,/

18

Fetch

bobS git fetch

alice

-

Unreferenced
commit

origin

commit b <

commit a

E_I*I

v

commitl

=

commit b

=
=N

commit a

commitl

N
-

v

Git — Software Engineeringll

origin/master

commit a

v

commitl

<

,/

19

PU ” / origin

commit b <

bObS glt fetCh commit a

bob$S git merge origin/master fetch + merge

E_IGI

= pull

v

Unreferenced
commit

commitl

/

bob

commit b (—& origin/master commit b

alice

commit a commit a <= master
commit v

IQE—I(-I

. _ Y, -

Git — Software Engineeringll

Push with Conflicps

alice$S git push origin master

| [rejected] master ->
master (non-fast-forward)

origin

master -

alice

~

Feature 2

commit a

<
<-I

commitl

/

-

Git — Software Engineeringll

=

Feature 1

commit a

6I
6

commitl

o
~

v

(on

-

-

Feature 2

commit a

.
<-I
r

i master

commitl

/

21

Push --force s °”g‘”\
=

alice$S git push --f origin master

Git — Software Engineeringll

22

Commit = Pull = I}uﬁh

alice$ git

master -

pull origin

o

origin

*I

commit a

commitl

Feature 2

~

/

alice
Merge
v v

- Feature 1

commit a

=
v

Git — Software Engineeringll

\ commitl /

(on

-

-

commit a

commitl

Feature 2

.
<-I
r

i master

/

23

release
feature

[]
b4 7’ é ki
S - 0.1
-~

Major
feature for
next release

m Many ways to structure branches

Incorporate
bugfix in
develop

m Some helpful tips:
0 Never merge in master or release branches
0 Never break build in shared branches

Start of
release

branch for
3 1.0

“next release”
means the release
after 1.0

Git — Software Engineering|i http://nvie.com/posts/a-successful-git-branching-model

24

http://nvie.com/posts/a-successful-git-branching-model/

What happened?

m git log
m git diff
m git blame

Git — Software Engineeringll

Learn some more

Learn & practice Git

Read the README.md for instructions or view them in browser:
http://gitexercises.fracz.com/e/commit-one-file

~/exercises

$ git status -s
A.TXT
B.tXtT

~/exercises
$ git add A.txt
|

With this platform you can learn and practice Git and discover its features
you might haven't been aware of. With all the exercises provided you will

rapidly become a Git Master!

Git exercises and training (go find some more), e.g.
m https://sitexercises.fracz.com/

m https://github.com/benthayer/git-gud

Git — Software Engineeringll

https://gitexercises.fracz.com/
https://github.com/benthayer/git-gud

Summary

1. Basics
m Objects
2. Local
m Checkout
m Add
m Commit
3. Collaboration
m Pull
m Push

Git — Software Engineeringll

27

