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THISIS GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HOU DO LEVSE IT?

NO IDEA. JUST MEMORIZE THESE SHELL
COMMANDS AND TYPE THEIM TO SYiC DR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\
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https://xkcd.com/1597/




Centralized vs Distributed VCS

Central Repository

Central
Repository

) \ Checkout
Commit
Update Push
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Centralized vs Distributed VCS

m Distributed VCS are mostly used like centralized VCS
0 Same features (branches, tags, merging)

m Local commits are a blessing and a curse
0 Commits can be made while offline
0 Higher chances of code diverging

m Pull-Requests are better than patch files
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Git Objects

Blob Commit
m Content of a file m References Tree object
m Nothing else m Metadata

m 0..* parent commits

Tree Tag
m File structure m Reference to other object

m References Blobs
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Commit

Blob Hello World
768903¢a03f7ccch3c6b61474188
f8e9a3bb5b

97b49d4c943e3715fe30f141cc6f27a8548 ceeOe

Tree

msg: initial

tree 97b49d4c943e3715¢f...

a3768903ca03f7ccch3c6b6f4741t88f8e9a3bb5b
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Local Operations ﬂ

R
=n
—

Git — Software Engineeringll



File Status Lifecycle




Commit Parent

msg: lllnitiall’

S git commit-m “v 2.1”
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Branches & Tags

msg: “Initial”
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S git commit-m “v 2.1”
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Head
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msg: “Initia

|II
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Detached Head

S git checkout v2.0

msg: “Initial”
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Detached Head

S git checkout v2.0
S git commit -m “v 2.x”

|II

msg: “Initia
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Detached Head

S git checkout v2.0
S git commit -m “v 2.x”
S git checkout master

List all commits:

git reflog

msg: “Initial”
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Fast-forward

S git merge branch_b

HEAD

msg: “Initial”
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msg: “Fix A”

branch_b
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Merge

S git merge branch_b

HEAD

|II

msg: “Initia
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msg: “Fix b”

branch_b

msg: “merge
branch_b”
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Collaboration
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Push

alice$S git push origin master
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Fetch

bobS git fetch
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Push with Conflicps

alice$S git push origin master

| [rejected] master ->
master (non-fast-forward)

origin

master -

alice

~

Feature 2

commit a
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commitl
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-
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Push --force s °”g‘”\
=

alice$S git push --f origin master
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Commit = Pull = I}uﬁh

alice$ git

master -

pull origin

o

origin

*I

commit a

commitl
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release
feature

[ ]
b4 7’ é ki
S - 0.1
-~

Major
feature for
next release

m Many ways to structure branches

Incorporate
bugfix in
develop

m Some helpful tips:
0 Never merge in master or release branches
0 Never break build in shared branches

Start of
release

branch for
3 1.0

“next release”
means the release
after 1.0

Git — Software Engineering|i http://nvie.com/posts/a-successful-git-branching-model
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What happened?

m git log
m git diff
m git blame
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Learn some more

Learn & practice Git

Read the README.md for instructions or view them in browser:
http://gitexercises.fracz.com/e/commit-one-file

~/exercises

$ git status -s
A.TXT
B.tXtT

~/exercises
$ git add A.txt
|

With this platform you can learn and practice Git and discover its features
you might haven't been aware of. With all the exercises provided you will

rapidly become a Git Master!

Git exercises and training (go find some more), e.g.
m https://sitexercises.fracz.com/

m https://github.com/benthayer/git-gud
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Summary

1. Basics
m Objects
2. Local
m Checkout
m Add
m Commit
3. Collaboration
m Pull
m Push
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