
Scrum Deep Dive

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2020/21

Image by Four Bricks Tall on flickr: https://www.flickr.com/photos/fourbrickstall/50374288516/ (CC BY-NC-ND 2.0)

Scrum — Software Engineering II

Estimations and schedules in Software Engineering

■ Depend on software development process

■ Highly uncertain, must be negotiated and revised with stakeholders

Waterfall effort estimation

■Methods: calibrated estimation model based on historical data,

e.g. Function Points, LOC or expert judgment

■ Output: X man-months

Agile effort estimation

■ Iterative methods, shorter planning horizon

■ Output: functionality to be implemented in the next iteration

Effort, Schedule & Cost Estimation

December 11, 2020 2

Scrum — Software Engineering II

Participants

■ Everyone operationally involved in creating the software product

■ Product Owner (and Scrum Master) are not playing

Preconditions

■ Product backlog is complete and prioritized

■ Backlog items are known by the team

■ The effort for a small backlog item was determined as a reference

■ Every participant has a set of sizing cards

Planning Poker

December 11, 2020 3“Planning Poker! I‘ve a straight flush!“ by Joel Bez (CC BY 2.0) via flickr

Scrum — Software Engineering II

Process

■ Product Owner explains backlog item and the business value

■ Product Owner answers questions of team members

■ Participants estimate complexity of item and choose a card (hidden)

■ All cards shown simultaneously

■ Participants with highest and lowest number explain choices

■ Arguments are discussed in the group

Planning Poker

December 11, 2020 4

Scrum — Software Engineering II

■ A new vote is conducted

■ Team agrees on item size

□Most occurring or average value might be acceptable

□ If not, another round is played

■ The moderator notes size of backlog item in the product backlog

■ The game ends if all backlog items are sized or time is over

Planning Poker

December 11, 2020 5

Scrum — Software Engineering II

Participants

■ Everyone operationally involved in creating the software product

■ Product Owner (and Scrum Master) are not participating,

but are present for questions

Preconditions

■ Product backlog is complete, prioritized and understood

■ A shared space to work in

■ User Stories that can be moved around

(post-it notes, printed, in shared workspace)

Affinity Estimation

December 11, 2020 6

Scrum — Software Engineering II

Step 1: Silent Relative Sizing

■ Team members place backlog items on scale of “smaller” to “larger”

■No discussion at this point

Affinity Estimation

December 11, 2020 7http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/

Tiny
items

Small
items

Bigger
items

Giant
items

Smaller

Larger

Scrum — Software Engineering II

Step 2: Editing

■ Team members rearrange stories on the scale, discuss changes

■ Clarifications from PO

Affinity Estimation

December 11, 2020 8

Step 3: Place stories into categories

■ Place size categories (e.g. Fibonacci sequence) above scale

■ Assign each story a size based on location

Smaller Larger

XS S M XLL

Tips & Tricks — Software Engineering II

Estimating Large Backlogs

Bucket Estimation

■ Relative estimation

■ Quickly place items into few buckets of radically different sizes

□ E.g. T-Shirt sizes (S, M, L, XL)

□ Quickly present an item, ask the crowd to point to a bucket

■ Estimate sample items from buckets to

determine size of an average item

□ Max. 2-3 items per bucket

□ Break up into smaller diverse groups

□ Estimate using a fitting approach

9https://blog.crisp.se/2018/06/03/mathiasholmgren/bucket-estimation-how-to-estimate-a-really-large-backlog

Small Medium Large

Tips & Tricks — Software Engineering II

Dealing with Uncertainty
Spikes

What can we do if no team members lack knowledge in a particular domain?

■ Hard to estimate with little knowledge

■ Take time out of the sprint to research and learn

■ Spike

■ For example, evaluate new technologies

10

Scrum — Software Engineering II

Begin the sprint

■ Break down stories into tasks and fill your Scrum Board

□ Keep acceptance criteria in mind

□ Keep Definition of Done in mind

■ Developers assign stories to themselves

■ Implement the stories task by task

□ Communicate what you are working on

□ e.g. Draft Pull Requests

After the Planning Meeting

December 11, 2020 11

Scrum — Software Engineering II

Project Workflow: Developers

December 11, 2020 12

Estimate User
Story Effort

Create Tasks
per User Story

Create Unit Test &
Implement Task

Push
Feature

Update Tickets,
Create

Documentation

Repeat until
Feature is finished,
Run tests frequently

Done and Sprint is not over yet?

■ Help your teammates

■ Refactor, write tests, document

■ Ask the Product Owner &

Scrum Master where help is needed

Tips & Tricks — Software Engineering II

Scrum Burn-Down Chart

■ Graphical representation of work left to do vs time

■ X-Axis: sprint timeline, e.g. 10 days

■ Y-Axis: work that needs to be completed in sprint (time or story points)

■ "Ideal" work remaining line: straight line from start to end

■ Actual work remaining line

□ above ideal: behind schedule, below ideal: ahead schedule

13Image: I8abug (CC BY-SA 3.0)

https://en.wikipedia.org/wiki/Burn_down_chart

Tips & Tricks — Software Engineering II

Defining when a User Story is finished

■ Acceptance criteria fulfilled

■ All related tests are green

■ Code meets agreed quality standards

■ Code was reviewed (by whom?)

■ Implementation meets non-functional requirements

□ Internationalization

□ Security, legal

□ Documentation

The Definition of Done is the team’s consensus

of what it takes to complete a feature.

Definition of Done

14December 11, 2020

Tips & Tricks — Software Engineering II

Definition of Ready

December 11, 2020 15

When is a user story ready for implementation?

■ Similar to Definition of Done, but for user stories

Examples

■ Estimated

■ Acceptance criteria

■ Mockups for UI stories

Tips & Tricks — Software Engineering II

Beyond Scrum

16

Scrum critique:

■ Scrum and agile are by no means universally accepted as "the way" to do

software engineering (“Agile Hangover”)

■ Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

□ Business-driven engineering

Scrum increases the feedback frequency while giving engineers no real power

□ Terminal juniority

Architecture and R&D and product development aren’t part of the

programmer’s job

□ It’s stupidly, dangerously short-term

engineers rewarded solely based on completion of current sprint

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

Tips & Tricks — Software Engineering II

Beyond Scrum

17

Scrum critique:

■ Building Software with David Heinemeier Hansson
https://medium.com/computers-are-hard/computers-are-hard-building-software-with-

david-heinemeier-hansson-c9025cdf225e

□ "estimation is bullshit. It’s so imprecise as to be useless"

□ "No one is ever able to accurately describe what […] software

should do before they see the piece of software."

□ "Agile was sort of onto this idea that you need running software

to get feedback but the modern implementations of Agile are

not embracing the lesson they themselves taught."

David Heinemeier
Hansson created
Ruby on Rails

https://medium.com/computers-are-hard/computers-are-hard-building-software-with-david-heinemeier-hansson-c9025cdf225e

Scaling Scrum

Image by Steel Woolon flickr: https://www.flickr.com/photos/wynnie/24006676647/ (CC BY-NC-ND 2.0)

Scrum — Software Engineering II

Recap: SWTII High-level Overview

December 11, 2020 19

Scrum — Software Engineering II

What’s needed in such an environment?

■ Development process

■ Communication on multiple levels

■ Infrastructure for collaboration

Implications of the Setup

December 11, 2020 20

Scrum — Software Engineering II

Start small and grow organically

■ Single Scrum (teaching) team for preparation

■ Work out foundation for the first sprints

■ Scale when it becomes necessary

SWTII is already at a scaling point

■ Multiple collaborating teams

Scaling Scrum: Project Start

December 11, 2020 21

Scrum — Software Engineering II

Product Owner / Backlog Hierarchy

December 11, 2020 22[Christoph Mathis, Scrum Center]

Main
Product Backlog

Chief
Product Owner

PO Team A

PO Team B

PO Team C

Update at the end of each sprint to
consolidate team results

Team
Product Backlogs

Just-in-time update
before the

synchronized planning

Tips & Tricks — Software Engineering II

Dealing with Dependencies & Scale
Ambassadors

Mutual Exchange of team members

■ Improve efficiency of communications

■ Allow deeper understanding of (other teams') problems

■ Prevents coordination problems early

□ Ambassadors should be fully integrated team members

□ Especially useful for API development, design, etc.

23[Pichler, Scrum – Agiles Projektmanagement erfolgreich einsetzen, 2007]

Scrum — Software Engineering II

Preparation

■ Individual review and retrospection meetings

■ Sprint Planning of all teams with 1-2 members each:

□ Review of the last sprint

□ Input dependencies (What is needed)

□Output dependencies (What needs to be delivered)

Execution

■ Individual Plannings in teams

■Discussion of identified additional input or output dependencies

■ Final Sprint Planning

Problem: Time consuming & high degree of coordination needed!

Scaling Scrum: Sprint Planning

December 11, 2020 24

Scrum — Software Engineering II

Another Option: Co-located planning

Scaling Scrum: Sprint Planning

December 11, 2020 25

One Room

Team 1

Team 2

Team 3

Team 4

POs

Team 6

Team 5

Team 7

Team 8

Scrum — Software Engineering II

Goal: Synchronize team effort with minimal coordination overhead

■ Regular meeting of Scrum Masters / process interested

□ Developers join if necessary (ambassador principle)

■ Scrum Masters or those interested

□ Share their learnings

□ Report completions & next steps

□ Coordinate inter-team dependencies

□ Negotiate responsibility

■ Developers discuss technical interfaces across teams

■ Distribute information back into the teams

Scrum of Scrums

December 11, 2020 26

Scrum — Software Engineering II

Effort estimation

■ Planning Poker

■ Affinity Estimation

■ Bucket Estimation

Summary

December 11, 2020 27

Scrum Concepts

■ Spikes

■ Developer workflow

■ Burn-Down Chart

■ Definition of Done

■ Definition of Ready

■ Scrum critique

Scaling Scrum

■ Backlog Hierarchy

■ Ambassadors

■ Scaled Sprint Planning

■ Scrum of Scrums

