Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Scrum Deep Dive

Software Engineering Il
WS 2020/21 Enterprise Platform and Integration Concepts

Image by Four Bricks Tall on flickr: https://www.flickr.com/photos /fourbrickstall/50374288516/ (CC BY-NC-ND 2.0)

Effort, Schedule & Cost Estimation ﬂ

Estimations and schedules in Software Engineering
m Depend on software development process
m Highly uncertain, must be negotiated and revised with stakeholders

Waterfall effort estimation

m Methods: calibrated estimation model based on historical data,
e.g. Function Points, LOC or expert judgment —

m Output: X man-months —

Agile effort estimation
m Iterative methods, shorter planning horizon

m Output: functionality to be implemented in the next iteration

Scrum — Software Engineering |

Planning Poker

Participants
m Everyone operationally involved in creating the software product
m Product Owner (and Scrum Master) are not playing

Preconditions

m Product backlog is complete and prioritized
m Backlog items are known by the team

m The effort for a small backlog item was determined as a reference
m Every participant has a set of sizing cards

Scrum — Software Engineering | “Planning Poker! I‘'ve astraight flush!“ by Joel Bez (CCBY 2.0) viaflickr

Planning Poker

Process

m Product Owner explains backlog item and the business value

m Product Owner answers questions of team members

m Participants estimate complexity of item and choose a card (hidden)
m All cards shown simultaneously

m Participants with highest and lowest number explain choices

m Arguments are discussed in the group

(O

Scrum — Software Engineering | i

Planning Poker

m A new vote is conducted
m Team agrees on item size
0 Most occurring or average value might be acceptable
O If not, another round is played
m The moderator notes size of backlog item in the product backlog
m The game ends if all backlog items are sized or time is over

Scrum — Software Engineering |

Affinity Estimation

Participants
m Everyone operationally involved in creating the software product
m Product Owner (and Scrum Master) are not participating,

but are present for questions

Preconditions
m Product backlog is complete, prioritized and understood
m A shared space towork in
m User Stories that can be moved around
(post-it notes, printed, in shared workspace)

Scrum — Software Engineering |

Affinity Estimation

Step 1: Silent Relative Sizing
m Team members place backlog items on scale of “smaller” to “larger”
m No discussion at this point

Larger
Smaller
Tiny Small Bigger Giant
items items items items

Scrum — Software Engineering I http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/

Affinity Estimation

Step 2: Editing
m Team members rearrange stories on the scale, discuss changes
m Clarifications from PO

Step 3: Place stories into categories

m Place size categories (e.g. Fibonacci sequence) above scale
m Assign each story a size based on location

Scrum — Software Engineering |

Estimating Large Backlogs

Bucket Estimation
m Relative estimation
m Quickly place items into few buckets of radically different sizes
0 E.g. T-Shirt sizes (S, M, L, XL)
0 Quickly present an item, ask the crowd to point to a bucket
m Estimate sample items from bucketsto Spall Medium Large
determine size of an average item
0 Max. 2-3 items per bucket
0 Break up into smaller diverse groups
0 Estimate using a fitting approach

Tips & Tricks — Software Engineeringll https://blog.crisp.se/2018/06/03/mathiasholmgren/bucket-estimation-how-to-estimate-a-really-large-backlog

Dealing with Uncertainty
Spikes

What can we do if no team members lack knowledge in a particular domain?
m Hard to estimate with little knowledge

m Take time out of the sprint to research and learn
m Spike
m For example, evaluate new technologies

Tips & Tricks — Software Engineering |l

10

After the Planning Meeting

Begin the sprint
m Break down stories into tasks and fill your Scrum Board
0 Keep acceptance criteria in mind
0 Keep Definition of Done in mind
m Developers assign stories to themselves
m Implement the stories task by task
0 Communicate what you are working on
0 e.g. Draft Pull Requests

Scrum — Software Engineering |

Project Workflow: Developers

Estimate User Create Tasks
Story Effort per User Story

o] . 5 Repeat until
Done and Sprint is not over yet: Create Unit Test Feature is finished.

m Help your teammates WISCUCIRERSE R\, tests frequently

m Refactor, write tests, document

m Ask the Product Owner &
Scrum Master where help is needed Update Tickets,

Create
Documentation

12

Scrum — Software Engineering |

Scrum Burn-Down Chart

Project XYZ keration 1 Burn Down

30

Start
70

14 M Ideal Tasks Remaining

10 B Actual Tasks Remaining

Sum of Task Estimates (days)

1] a 10 14
fteration Timeline (days)

Graphical representation of work left to do vs time

X-Axis: sprint timeline, e.g. 10 days

Y-Axis: work that needs to be completedin sprint (time or story points)
"Ideal" work remaining line: straight line from start to end

Actual work remaining line
O above ideal: behind schedule, below ideal: ahead schedule

Tips & Tricks — Software Engineeringll Image:18abug (CC BY-SA 3.0) 1 3

https://en.wikipedia.org/wiki/Burn_down_chart

Definition of Done

Defining when a User Story is finished

Acceptance criteria fulfilled

All related tests are green

Code meets agreed quality standards

Code was reviewed (by whom?)

Implementation meets non-functional requirements
O Internationalization
O Security, legal

O Documentation

The Definition of Done is the team’s consensus
of what it takes to complete a feature.

Tips & Tricks — Software Engineering |l

14

Definition of Ready

When is a user story ready for implementation?
m Similar to Definition of Done, but for user stories

Examples

m Estimated

m Acceptancecriteria

m Mockups for Ul stories

Tips & Tricks — Software Engineering |l

15

Beyond Scrum ﬂ

Scrum critique:
m Scrum and agile are by no means universally accepted as "the way" to do
software engineering (“Agile Hangover”)

m Michael O. Church - Why “Agile” and especially Scrum are terrible (2015)
https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

O Business-driven engineering
Scrum increases the feedback frequency while giving engineers no real power
O Terminal juniority

Architectureand R&D and product development aren’t part of the
programmer’s job

O It’s stupidly, dangerously short-term
engineers rewarded solely based on completion of current sprint

Tips & Tricks — Software Engineering |l 1 6

https://michaelochurch.wordpress.com/2015/06/06/why-agile-and-especially-scrum-are-terrible/

Beyond Scrum

Scrum critique:

m Building Software with David Heinemeier Hansson
https://medium.com/computers-are-hard/computers-are-hard-building-software-with-
david-heinemeier-hansson-c9025cdf225e

0 "estimation is bullshit. It’s so imprecise as to be useless"”

0 "No one is ever able to accurately describe what [...] software
should do before they see the piece of software."

0 "Agile was sort of onto this idea that you need running software
to get feedback but the modern implementations of Agile are

not embracing the lesson they themselves taught."

Tips & Tricks — Software Engineering |l

David Heinemeier
Hansson created
Ruby on Rails

17

https://medium.com/computers-are-hard/computers-are-hard-building-software-with-david-heinemeier-hansson-c9025cdf225e

Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

3

LTI

Scaling Scrum

Image by Steel Woolon flickr: https://www.flickr.com/photos/wynnie/24006676647/ (CCBY-NC-ND2.0)

Recap: SWTII High-level Overview

19

Implications of the Setup

What’s needed in such an environment?
m Development process

m Communication on multiple levels

m Infrastructure for collaboration

Scrum — Software Engineering |

20

Scaling Scrum: Project Start

Start small and grow organically

m Single Scrum (teaching) team for preparation
m Work out foundation for the first sprints

m Scale when it becomes necessary

SWTII is already at a scaling point
m Multiple collaborating teams

Scrum — Software Engineering |

21

Product Owner / Backlog Hierarchy

Update at the end of each Sprin/ E g
1

consolidate team results
PO Team A

——

. E g
. Just-in-time update
Chief — beforethe PO Team B
Product Owner synchronized planning
Main \ E
Product Backlog
1
1
PO Team C
Team

Product Backlogs

Scrum — Software Engineeringll [Christoph Mathis, Scrum Center]

22

Dealing with Dependencies & Scale ﬂ
Ambassadors

Mutual Exchange of team members
m Improve efficiency of communications

m Allow deeper understanding of (other teams') problems
m Prevents coordination problems early

0 Ambassadors should be fully integrated team members
0 Especially useful for APl development, design, etc.

Tips & Tricks — Software Engineering|l [Pichler, Scrum — Agiles Projektmanagement erfolgreich einsetzen, 2007] 2 3

Scaling Scrum: Sprint Planning

Preparation

m Individual review and retrospection meetings

m Sprint Planning of all teams with 1-2 members each:
0 Review of the last sprint
O Input dependencies (What is needed)
0 Output dependencies (What needs to be delivered)

Execution

m Individual Plannings in teams

m Discussion of identified additional input or output dependencies
m Final Sprint Planning

Problem: Time consuming & high degree of coordination needed!

Scrum — Software Engineering |

24

Scaling Scrum: Sprint Planning

Another Option: Co-located planning

Scrum — Software Engineering |

Team 3

Team 4

Team 5

Team 6

One Room

25

Scrum of Scrums

Goal: Synchronize team effort with minimal coordination overhead
m Regular meeting of Scrum Masters / process interested
0 Developers join if necessary (ambassador principle)
m Scrum Masters or those interested
0 Share their learnings
0 Report completions & next steps
0 Coordinate inter-team dependencies
0 Negotiate responsibility
m Developers discuss technical interfaces across teams
m Distribute information back into the teams

Scrum — Software Engineering |

26

Summary E

Effort estimation Scrum Concepts Scaling Scrum

m Planning Poker m Spikes m Backlog Hierarchy

m Affinity Estimation m Developer workflow m Ambassadors

m Bucket Estimation m Burn-Down Chart m Scaled Sprint Planning
m Definition of Done m Scrum of Scrums

m Definition of Ready
m Scrum critique

27

Scrum — Software Engineering |

