
Software Reviews

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2020/21

Image by Chris Isherwood from flickr: https://www.flickr.com/photos/isherwoodchris/6807654905/ (CC BY-SA 2.0)



Code Reviews — Software Engineering II 

Review Meetings

Principles

■ Generate comments on software

■ Several sets of eyes check

■ Emphasis on people over tools

2

“a software product is [examined by] project personnel, 
managers, users, customers, user representatives, or 
other interested parties for comment or approval
—IEEE1028 ”



Code Reviews — Software Engineering II 

Motivation

■ Improve code

■Discuss alternative solutions

■ Transfer knowledge

■ Find defects

Software Reviews

3Image by Glen Lipka: http://commadot.com/wtf-per-minute/



Code Reviews — Software Engineering II 

Manager

■ Assessment is an important task for manager

■ Possible lack of deep technical understanding

■ Assessment of product vs. assessment of person

■ Outsider in review process

■ Support with resources (time, staff, rooms, …)

Developer

■ Should not justify but only explain their results

■ No boss should take part at review

Involved Roles

4



Code Reviews — Software Engineering II 

Review Team

Team lead

■ Responsible for quality of review & moderation

■ Technical, personal and administrative competence

Reviewer

■ Study the material before first meeting

■ Don’t try to achieve personal targets!

■ Give positive and negative comments on review artifacts

Recorder

■ Any reviewer, can rotate even in review meeting

■ Protocol as basis for final review document

5



Code Reviews — Software Engineering II 

Tasks of Review Team

Deliver a good review

■ “Don’t shoot the messenger”

■ Identify issues, but don’t try to solve them

Clear assessments of artifacts

■ Accepted, partly accepted, needs corrections, rejected

■ Acceptance only possible if no participant speaks against it

Artifact issues should be identified and documented

6



Code Reviews — Software Engineering II 

Types of Reviews [IEEE1028-97]

Management Review

■ Monitor progress and status of plans, confirm requirements

■ Evaluate effectiveness of management approaches / corrective actions

Technical Review

■ Evaluate entire software on suitability for intended use

■ Provide evidence whether software product meets specifications

7



Code Reviews — Software Engineering II 

Types of Reviews [IEEE1028-97]

Inspections

■ Identify software product anomalies, invented at IBM in the 1970’s

■ Formal process, can involve hard copies of the code and documents

■ Review team members check important artifacts independently, 

consolidation meeting with developers

■ Preparation time for team members, shorter meetings

Walk-through

■ Evaluate software, focus on educating an audience

■ Organized by developer for reviewing own work

■ Bigger audience can participate, little preparation for team members

8



Code Reviews — Software Engineering II 

Artifacts to Review

Should be reviewed Might not have to be reviewed

Parts with complicated algorithms Trivial parts where no complications are 
expected

Critical parts where faults lead to system 
failure

Parts which won’t break the functionality if 
faults occur 

Parts using new technologies / 
environment / …

Parts which are similar to those previously 
reviewed

Parts constructed by inexperienced team 
members

Reused or redundant parts

9



Code Reviews — Software Engineering II 

Modern Code Reviews

■ Follows more lightweight, flexible process

■ Change sizes are smaller

■ Performed regularly and quickly,

mainly just before code committed to main branch

Shift in Focus

■ From defect finding to group problem solving activity

■ Prefer discussion and fixing code over reporting defects

11

[Rigby’13]
[Bacchelli‘13]



Code Reviews — Software Engineering II 

Code Review Goals

12http://blakesmith.me/2015/02/09/code-review-essentials-for-software-teams.html

Hierarchy of goals

■ Building a shared mental model

■ Ensuring sane design

■ Findings bugs vs. understanding code

Style

Identify
bugs

Design 
discussion

Correct solution

Mental alignment

Least
important

Most
important



Code Reviews — Software Engineering II 

Recent Research

■ Code review coverage and review participation share

significant link with software quality

■ Most comments concern code improvements,

understandability, social communication

■ Only ~15% of comments indicate possible defects

■ Developers spend approximately five hours per week 

(10-15% of their time) in code reviews

13

[Bosu’17]
[McIntosh’14]
[Bacchelli ‘13]



Code Reviews — Software Engineering II 

Recent Research

Code Reviews — Software Engeneering II 

14

[Bacchelli ‘13]

[Bosu’17]

Expectations Empirical study outcomes

Expectations 
4 years later

Maintainability and code improvements
identified as most important aspects of 
modern code reviews



Code Reviews — Software Engineering II 

Challenges of the Review Process

■ Delay the use of implemented features

■ Forces the reviewers to switch context away from their current work

■ Offer little feedback for legacy code

■ Overloading (too many files),

developers create large patches

■ Overcrowding (too many reviewers),

assigning too many reviewers may

lower review quality

15Image: https://devops.com/dark-side-infrastructure-code/



Code Reviews — Software Engineering II 

Post-commit Code Review

■ Review after committing to VCS (pull requests are one! way of doing this)

■ Used by most projects on GitHub and BitBucket

16

■ Developers can commit continuously

■ Other team members see code 

changes in VCS and can adapt their 

work

■ Flexible definition of the code to be 

reviewed (set of commits, whole 

branch, some files)

■ Chance of unreviewed code in main repository

□ Need to / can set restrictions

■ Requires branches or similar to work effectively

■ May take a while for developers to come back 

to the code and improvement ideas

+ –

https://www.devart.com/review-assistant/learnmore/pre-commit-vs-post-commit.html



Code Reviews — Software Engineering II 

Pre-commit Code Review

■ Review before committing to version control system

(e.g. using mailing lists / Gerrit, Crucible tools)

■ Used by e.g. Linux Kernel, Git, Google

17

■ No code enters unreviewed

■ Code quality standards met before 

commit, no 'fixes'

■ No repository access needed for 

reviews

■ Other developers definitely not 

affected by bugs in reviewed code

■ Reviewing all code takes time

□ Deciding what needs a review takes time 

too

■ Possibly another complex system to handle

□ Might not want to work on submitted code 

until review done (e.g. mailing list)

+ –



Code Reviews — Software Engineering II 

Reviewer Assignment

Usually, two reviewers find optimal number of defects

Reviewer candidates

■ People who contributed changes (find defects)

■ New developers (transfer knowledge)

■ Team members with a small review queue

■ Reviewers with different fields of expertise

■ Let reviewers know what they should look out for

18[Rigby’13]Image: http://geek-and-poke.com/geekandpoke/2010/11/1/how-to-make-a-good-code-review.html



Code Reviews — Software Engineering II 

Review Content

19Images: http://atlassianblog.wpengine.com/developer/assets_c/2011/07/mt-perloc-thumb-500x263-7290.png
https://twitter.com/girayozil/status/306836785739210752?lang=en

■ Size of artifact to review matters

■ Semantically coherent changes easier 

to review than interleaved concerns



Code Reviews — Software Engineering II 

Code Review In Industry

Microsoft

■ Median completion times: 14.7h (Bing), 18.9h (Office), 19.8h (SQL Server)

■ Median number of reviewers: 3-4

■ Developers spend 4-6 hours per week on reviews

Google

■ Mandatory review of every change 

■ Median completion times: 15.7h (Chrome), 20.8h (Android)

■ Median patch size: 78 lines (Chrome), 44 lines (Android)

■ Median number of reviewers: 2

20

[Rigby’13]



Code Reviews — Software Engineering II 

Code Review Tools

Gerrit (https://www.gerritcodereview.com/)

■ Integrated with Github: http://gerrithub.io

■ Used by, e.g., Chromium, Eclipse, Qt, Typo3, Wikimedia, etc.

■ Plug-ins available (e.g. EGerrit for Eclipse)

FishEye (https://www.atlassian.com/software/fisheye/overview)

■ Visualize, Review, and organize code changes

GitHub Pull Requests

■ Branches with comments and checks

21

http://gerrithub.io
https://www.atlassian.com/software/fisheye/overview


Code Reviews — Software Engineering II 

Software Review Helpers

■ Testing checks functionality via dynamic analysis

■ Code reviews manually check code quality via static analysis

Automated static analysis (linters)

■ Code coverage (e.g. SimpleCov https://github.com/simplecov-ruby/simplecov)

■ Coding conventions (e.g. RuboCop, https://github.com/rubocop-hq/rubocop )

■ Code smells (e.g. reek https://github.com/troessner/reek)

22



Code Reviews — Software Engineering II 

■ Reviews are not a new thing, good reasons to do them

■Different types of review techniques

□Management Review

□ Technical Review

□ Inspection

□Walk-through

□Modern / contemporary code reviews

■Method to find faults and improvement opportunities early in the process

Summary

23



Code Reviews — Software Engineering II 

References

[Bosu’17] Bosu, Amiangshu, et al. "Process Aspects and Social Dynamics of 

Contemporary Code Review: Insights from Open Source Development and 

Industrial Practice at Microsoft." TSE 43.1 (2017): 56-75.

[McIntosh’14] McIntosh, Shane, et al. "The impact of code review coverage and 

code review participation on software quality: A case study of the qt, vtk, and 

itk projects." MSR’14.

[Rigby’13] Rigby, Peter C., and Christian Bird. "Convergent contemporary 

software peer review practices." FSE’13.

[Bacchelli‘13] Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes,

and challenges of modern code review." ICSE’13.

[Feitelson‘13] Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck. 

"Development and deployment at facebook." IEEE Internet Computing 17.4 

(2013): 8-17.

24


