
Advanced Testing Concepts (in Ruby on Rails)

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2020/21

Image by Paul Albertella on flickr: https://www.flickr.com/photos/paulspace/10427471016 (CC BY 2.0)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

Advanced Concepts & Testing Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

2

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Setup and Teardown: RSpec

3

As a developer using RSpec
I want to execute code before and after test blocks
So that I can control the environment in which tests are run

before(:example) # run before each test block
before(:context) # run one time only, before all of the examples in a group

after(:example) # run after each test block
after(:context) # run one time only, after all of the examples in a group

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:example)

4

■ before(:example) blocks are run
before each example

■ :example scope is also available
as :each

class Thing
def widgets
@widgets = []

end
end

describe Thing do
before(:example) do
@thing = Thing.new

end

describe "initialized in before(:example)" do
it "has 0 widgets" do
expect(@thing.widgets.count).to eq(0)

end
end

end

https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Setup RSpec – before(:context)

5

■ before(:context) blocks are run
before all examples in a group

■ :context scope is also available
as :all

■ Warning: Mocks are only supported in
before(:example)

class Thing
... #as before

describe Thing do
before(:context) do
@thing = Thing.new

end

context "initialized in before(:context)" do
it "can accept new widgets" do
@thing.widgets << Object.new

end

it "shares state across examples" do
expect(@thing.widgets.count).to eq(1)

end
end

end

https://www.relishapp.com/rspec/rspec-core/v/3-2/docs/hooks/before-and-after-hooks

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Teardown RSpec

6

describe "Test the website with a browser" do
before(:context) do
@browser = Watir::Browser.new

end

it "should visit a page" do
...

end

after(:context) do
@browser.close

end
end

■ after(:context) blocks are run after
all examples in a group

■ For example to clean up

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test Run

7■ Rails Test Prescriptions. Noel Rappin. 2010. p. 37. http://zepho.com/rails/books/rails-test-prescriptions.pdf

Run setup

Run
teardown

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

Advanced Concepts & Testing Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

8

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Isolation of Test Cases

9Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Tests should be independent

■ If a bug in a model is introduced:
Only tests related to this model should fail

■ Allow localization of bug

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Isolation of Test Cases

10Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Achieving Test Case Isolation

■ Don't write complex tests

■ Don’t share complex test data

■ Don’t use complex objects

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Two main ways to provide data to test cases:

Fixtures

■ Fixed state at the beginning of a test

■ Assertions can be made against this state

Factories

■ Blueprints for models

■ Used to generate test data locally in the test

Test Data Overview

11

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Fixtures for testing

■ Fixed Sample data/objects

■ Populate testing database with predefined data before test run

■ Stored in database independent files (e.g. test/fixtures/<name>.yml)

Fixture Overview

12
■ http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

■ http://guides.rubyonrails.org/testing.html

test/fixtures/users.yml
david: # Each fixture has a name
name: David Heinemeier Hansson
birthday: 1979-10-15
profession: Systems development

steve:
name: Steve Ross Kellock
birthday: 1974-09-27
profession: Front-end engineer

http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html
http://guides.rubyonrails.org/testing.html

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Fixtures are global

■ Only one set of data, every test has to deal with all test data

Fixtures are spread out

■ Own directory

■ One file per model -> data for one test is spread out over many files

■ Tracing relationships is challenging

Fixtures are distant

■ Fixture data is not immediately available in the test

■ expect(users(:ernie).age + users(:bert).age).to eq(20) #why 20?

Fixtures are brittle

■ Tests rely on fixture data, they break when data is changed

■ Data requirements of tests may be incompatible

Drawbacks of Fixtures

13

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test data should be

■ Local: Defined as closely as possible to the test

■ Compact: Easy and quick to specify; even for complex data sets

■ Robust: Independent from other tests

One way to achieve these goals: Data factories

Test Data Factories

14

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Defining Factories

15

This will guess the User class
FactoryBot.define do
factory :user do
first_name { "John" }
last_name { "Doe" }
admin false

end

This will use the User class
(Admin would have been guessed)
factory :admin, class: User do
first_name { "Admin" }
last_name { "User" }
admin true

end
end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

We use FactoryBot

■ Rich set of features around

□ Creating objects

□ Connecting objects

■ Rails automatically loads
spec/factories.rb and
spec/factories/*.rb

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

■ Different strategies: build, create (standard), attributes_for

Using Factories

16

Returns a User instance that's _not_ saved
user = build(:user)

Returns a _saved_ User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Passing a block will yield the return object
create(:user) do |user|
user.posts.create(attributes_for(:post))

end

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Attributes

17

Lazy attributes
factory :user do
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }

end

Dependent attributes
factory :user do
first_name { "Joe" }
email { "#{first_name}.#{last_name}@example.com".downcase }

end

override the defined attributes by passing a hash/dict
create(:user, last_name: "Doe").email
=> "joe.doe@example.com"

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

The opposite of lazy
is eager evaluation

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Associations

18

factory :post do
If factory name == association name, the factory name can be left out.
author

End

factory :post do
specify a different factory or override attributes
association :author, factory: :user, last_name: "Writely“

End

Builds and saves a User and a Post
post = create(:post)
post.new_record? # => false
post.author.new_record? # => false

Builds and saves a User, and then builds but does not save a Post
post = build(:post)
post.new_record? # => true
post.author.new_record? # => false

■ http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

http://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

Advanced Concepts & Testing Tests

■ Setup and Teardown

■ Test Data

■ Test Doubles

22

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Isolation of Test Cases

23Steve Freeman, Nat Pryce: Growing Object-Oriented Software, Guided by Tests

Achieving Test Case Isolation

■ Don't write complex tests

■ Don’t share complex test data

■ Don’t use complex objects

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Test Doubles

24

Generic term for object that stands in for a real object during a test

■ Think “stunt double”

■ Purpose: automated testing

Used when

■ Real object is unavailable

■ Real object is difficult to access or trigger

■ Real object is slow or expensive to run

■ An application state is required that is challenging to create

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Verifying Behavior During a Test

25

■ Usually: test system state after a test

□ Only the result of a call is tested, intermediate steps are not considered

■ Test doubles: Possibility to test detailed system behavior

□ E.g. How often a method is called, in which order, with which parameters

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Ruby Test Double Frameworks

26

Many (Ruby) frameworks available:

■ RSpec-mocks (http://github.com/rspec/rspec-mocks)

■ Mocha (https://github.com/freerange/mocha)

■ FlexMock (https://github.com/jimweirich/flexmock)

A collection of mocking frameworks (as well as many others):

■ https://www.ruby-toolbox.com/categories/mocking

We recommend RSpec-Mocks as it
shares a common syntax with RSpec

require("rspec/mocks/standalone")

imports the mock framework.
Useful for exploring in irb.

http://github.com/rspec/rspec-mocks
https://github.com/freerange/mocha
https://github.com/jimweirich/flexmock
https://www.ruby-toolbox.com/categories/mocking

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Stubs

27

dbl = double(“user”)
allow(dbl).to receive_messages(:name => “Fred”, :age => 21)
expect (dbl.name).to eq(“Fred”) #this is not really a good test :)
dbl.height #raises error (even if your original object had that property)

■ Method call on the real object does not happen

■ Returns a predefined value if called

■ Strict by default (error when messages received that have not been allowed)

■ Alternatively, if all method calls should succeed: Null object double

dbl = double(“user”).as_null_object
dbl.height # this is ok! Returns itself (dbl)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/null-object-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Spies

28

dbl = spy("user")
dbl.height
dbl.height
expect(dbl).to have_received(:height)

■ Stubs with Given-When-Then structure

■ Allows to expect that a message has been received after the message call

■ Alternatively, spy on specific messages of real objects

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

user = User.new
allow(user).to receive(:height) # Given a user
user.measure_size # When I measure the size
expect(user).to have_received(:height) # Then height is called

This pattern for
tests is also called
arrange-act-assert

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/spies

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Mocks are Stubs with attitude

■ Demands that mocked methods are called

■ Or as often as desired

■ If test ends with expected calls missing, it fails!

Mocks

29

book = double("book", :title => "The RSpec Book")
expect(book).to receive(:open).once # 'once' is default
book.open # this works
book.open # this fails

user = double("user")
expect(user).to receive(:email).exactly(3).times
expect(user).to receive(:level_up).at_least(4).times
expect(user).to receive(:notify).at_most(3).times

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/returning-a-value

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Stub (passive)

■ Returns a predetermined value for a method call

Mock (more aggressive)

■ In addition to stubbing: set a “message expectation”

■ If expectation is not met, i.e. method is not called: test failure

Stubs vs. Mocks

dbl = double("a user")
allow(dbl).to receive (:name) => { "Fred" }
expect (dbl.name).to eq("Fred") #this is not really a good test :)

dbl = double(“a user”)
expect(dbl).to receive(:name)
dbl.name #without this call the test would fail

Stubs don‘t fail your tests, mocks can!

30

In RSpec the allow keyword refers
to a stub, expect to a mock.
This will vary by framework.

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Partially Stubbing Instances

31

s = "a user name" # s.length == 11
allow(s).to receive(:length).and_return(9001)
expect (s.length).to eq(9001) # the method was stubbed
s.capitalize! # this still works, only length was stubbed

■ Sometimes you want only part of objects to be stubbed

□ Only expensive methods might need stubbing

■ Extension of a real object instrumented with stub behaviour

■ “Partial test double” (in RSpec terminology)

■ http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

http://www.relishapp.com/rspec/rspec-mocks/v/3-2/docs/basics/partial-test-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Method Stubs with Parameters

34
■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments

■ Test that methods are called with correct parameters

■ Failure when calling stub with wrong parameters

■ A mock/expectation will only be satisfied when called (and arguments match)

calc = double("calculator")
allow(calc).to receive(:double).with(4).and_return(8)
expect(calc.double(4)).to eq(8) # this works

■ Calling mock with wrong parameters fails:

dbl = double("spiderman")
anything matches any argument
expect(dbl).to receive(:injury).with(1, anything, /bar/)
dbl.injure(1, 'lightly', 'car') # this fails, "car" does not match /bar/

These are only a few
of the matchers
RSpec-mocks provides

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/setting-constraints/matching-arguments

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Raising Errors

35

■ A stub can raise an error when it receives a message

■ Allow easier testing of exception handling

dbl = double()
allow(dbl).to receive(:foo).and_raise("boom")
dbl.foo # This will fail with:

Failure/Error: dbl.foo
RuntimeError:
boom

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/configuring-responses/raising-an-error

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Verifying Doubles

36

■ Stricter alternative to normal doubles

■ Check that methods being stubbed are present on underlying object

■ Verify that provided arguments are supported by method signature

class Post
attr_accessor :title, :author, :body

end

post = instance_double("Post") # reference to the class Post
allow(post).to receive(:title)
allow(post).to receive(:message).with (‘a msg’) # this fails (not defined)

■ https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

https://relishapp.com/rspec/rspec-mocks/v/3-2/docs/verifying-doubles

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Disadvantages

■Mock objects need to accurately model mocked object behavior

■ Risk to test a value set by a test double (false positives)

■ Run out of sync with real implementation

□ Brittle while refactoring

Advantages

■ Test focused on behavior

■ Speed (e.g. not having to use an expensive database query)

■ Isolation of tests

Test Doubles Pro and Contra

38

Best practice: try to
minimize the amount of
mocked objects. (why?)

Summary

Test run steps

■ Setup & teardown

■ Test run process

■ Test Data

□ Principles

□ Fixtures vs factories

Test doubles

■ Use cases & goals

■Mocks

■ Stubs

■ Spy

■ Pros & Cons

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II 42

Testing Tests

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2020/21

Image by Pascal on flickr: https://www.flickr.com/photos/pasukaru76/5967748825 (CC0 1.0)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Agenda

Advanced Concepts & Testing Tests

■ Test Coverage

■ Fault Seeding

■ Mutation Testing

■ Metamorphic Testing

44

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Most commonly used metric for evaluating test suite quality

■ Test coverage = executed code during test suite run ÷ all code * 100

□ e.g. 85 loc / 100 loc = 85% test coverage

Line coverage

■ Absence of line coverage indicates potential problems

■ (High) line coverage means very little

■ In combination with good testing practices, coverage might say
something about test suite reach

■ Circa 100% test coverage is a by-product of BDD

Test Coverage

45

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Most common approaches

■ Line coverage

■ Branch coverage

Tool

■ SimpleCov Ruby tool

■ Uses line coverage

-> 100% line coverage even if one branch is not executed

Measuring Code Coverage

46

if (i > 0); i += 1 else i -= 1 end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Independence

■ Of external test data

■ Of other tests (and test order)

Repeatability

■ Same results each test run

■ Potential Problems

□ Dates, e.g. Timecop (https://github.com/travisjeffery/timecop)

□ Random numbers

□ Type and state of test database

□ Type of employed library depending on system architecture

Test Tips

47

https://github.com/travisjeffery/timecop

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Clarity

■Test purpose should be immediately clear

■Tests should be small, simple, readable

■Make it clear how the test fits into the larger test suite

Worst case:

Better:

48

it "sums to 37" do
expect(37).to eq(User.all_total_points)

end

Test Tips

it "rounds total points to nearest integer" do
User.add_points(32.1)
User.add_points(5.3)
expect(37).to eq(User.all_total_points)

end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Conciseness

■ Use the minimum amount of
code and objects

■ But: Clear beats short

■Writing the minimum required
amount of tests for a feature

-> Test suite will be faster

49

def assert_user_level(points, level)
user = User.create(points: points)
expect(level).to eq(user.level)

end

it test_user_point_level
assert_user_level(0, "novice")
assert_user_level(1, "novice")
assert_user_level(500, "novice")
assert_user_level(501, "apprentice")
assert_user_level(1001, "journeyman")
assert_user_level(2001, "guru")
assert_user_level(nil, "novice")

end

Test Tips

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 277. http://zepho.com/rails/books/rails-test-prescriptions.pdf

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

If a single model method call results in many model changes:

■ High number of assertions -> High clarity and cohesion

■ High number of assertions -> Low test independence

■ Use context & describe and have single assertion per test

Conciseness: #Assertions per Test

50

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Robustness

■ Underlying code is correct -> test passes

■ Underlying code is wrong -> test fails

■ Example: view testing

51

Test Tips

describe "the signin process", :type => :feature do
it "signs me in (text version)" do
visit '/dashboard'
expect(page).to have_content “My Projects”

end
version below is more robust against text changes
it "signs me in (css selector version)" do
visit '/dashboard'
expect(page).to have_css "h2#projects"

end
end

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Robustness

■ Reusable code increases robustness

■ E.g. constants instead of magic numbers

■ Be aware of tests that always pass regardless of underlying logic

52

def assert_user_level(points, level)
user = User.make(:points => points)
expect(level).to eq(user.level)

end

def test_user_point_level
assert_user_level(User::NOVICE_THRESHOLD + 1, "novice")
assert_user_level(User::APPRENTICE_THRESHOLD + 1, "apprentice")
...

end

Test Tips

■ Rails Test Prescriptions. Noel Rappin. 2010. p. 278. http://zepho.com/rails/books/rails-test-prescriptions.pdf

http://zepho.com/rails/books/rails-test-prescriptions.pdf

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Troubleshooting

53

Reproduce the error

■Write a test! (and send it to someone else?)

Inspect recent changes

■ Isolate commit/change that causes failure

Isolate the failure

■ thing.inspect

■ Add additional assertions to your test

■ save_and_open_page (take a snapshot of a page)

Explain to someone else

■ Rubber duck debugging

http://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg

Also refer to "regression
testing" aka "non regression
testing" (why?)

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Manual Fault Seeding

54

Conscious introduction of faults into the program

■ Run tests

■Minimum 1 test should fail

If no test fails, then a test is missing

■ Possible even with 100% line coverage

■ Asserts functionality coverage

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Mutant: Modified version of the program with small change

■ Tests correctly cover code -> Test should notice change and fail

Mutation Testing

55

if month > 12 then
year += month / 12
month = month % 12

end
Tests pass for

Tests fail for

Test
Cases

mutate

Program
Source

Mutants

if not month > 13 then
year -= month / 12
month = month % 12

end

next_month:

■Mutation Coverage: How many mutants did not cause a test to fail?
Asserts functionality & behavior coverage

□ For Ruby: Mutant (https://github.com/mbj/mutant)

https://github.com/mbj/mutant

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Metamorphic Testing

56

When testing, often hard to find test oracle

■ Establish whether a test has passed or failed

■ Require understanding of input-output-relation

■May be more convenient to reason about relations between outputs

Compare outputs of program runs

■ Describe inherent behavior of the program

■ No need to know exact outputs

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II

Example: Rendering Lighting

57

Not easy to verify all pixels were rendered correctly

Use relations of outputs for test cases

Position of light source changes

■ Points closer to light source will be brighter

□ Exception: White pixels

■ Points further away from light source will be darker

□ Exception: Black pixels

■ Points hidden behind other objects don't change
brightness

Summary

Test Quality

■ Test Coverage

■ Fault Seeding

■Mutation Testing

■Metamorphic Testing

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II 58

Further Reading

Behavior-driven Development and Testing in Ruby on Rails — Software Engineering II 59

■ http://betterspecs.org – Collaborative RSpec best practices documentation effort

■ Everyday Rails Testing with RSpec by Aaron Sumner, leanpub

■ The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends by
David Chelimsky et al.

■ Quizzes

□ http://www.codequizzes.com/rails/rails-test-driven-development/controller-specs

□ http://www.codequizzes.com/rails/rails-test-driven-development/model-specs

http://www.codequizzes.com/rails/rails-test-driven-development/controller-specs
http://www.codequizzes.com/rails/rails-test-driven-development/model-specs

