

IT Systems Engineering | Universität Potsdam

Clinical decision support system for acute kidney injury

Bastien Grasnick, Henriette Dinger 26.01.2016 Outline

- 1. Background
- 2. Goal
- 3. Technology
- 4. Solution
- 5. Results
- 6. Further steps
- 7. Discussion

Background

Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics

26.01.16

Background Problem

4

- Acute kidney injury (AKI):
 - Mostly asymptomatic
 - High risk of death
 - No trivial treatment

- Continuous monitoring of creatinine values required
 - High amount of data

lasso

26.01.16

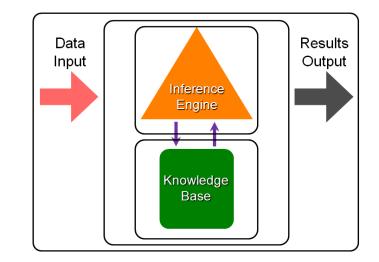
Background Significance

- Currently in Germany
 - 70.000 patients / 2,5 Mio. EUR p.a.
 - 100.000 patients by 2020
- High risk of mortality
- Very high medical costs for dialysis

Background Clinical Decision Support System (CDSS)

"Clinical decision support systems (CDSS) provide clinicians, staff, patients, and other individuals with **knowledge** and **personspecific information**, intelligently filtered and presented at **appropriate times**, to enhance health and health care"

Berner (2009)

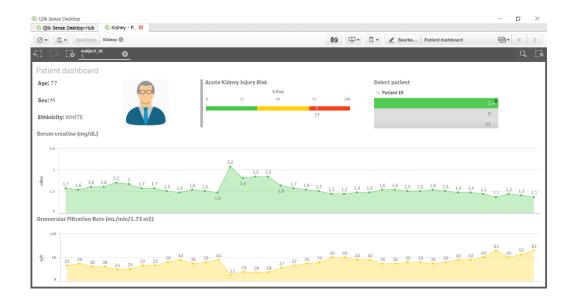


Goal

7

26.01.16

 Develop a proof of concept in form of a Bayesian network for the identification of AKI for future use in a clinical decision support system



Technology

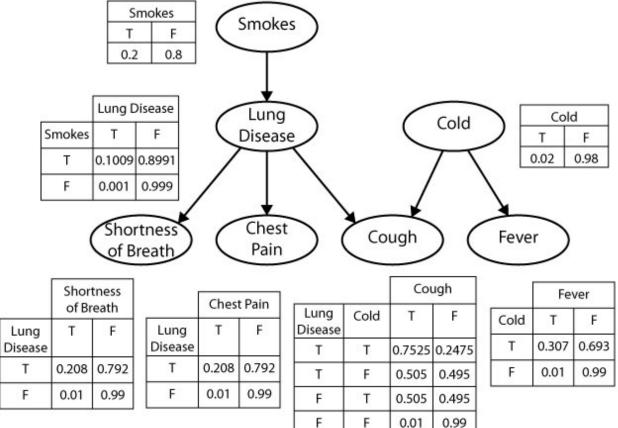
26.01.16

10

 Directed acyclic graph representing multiple random variables and their conditional dependencies as probability functions

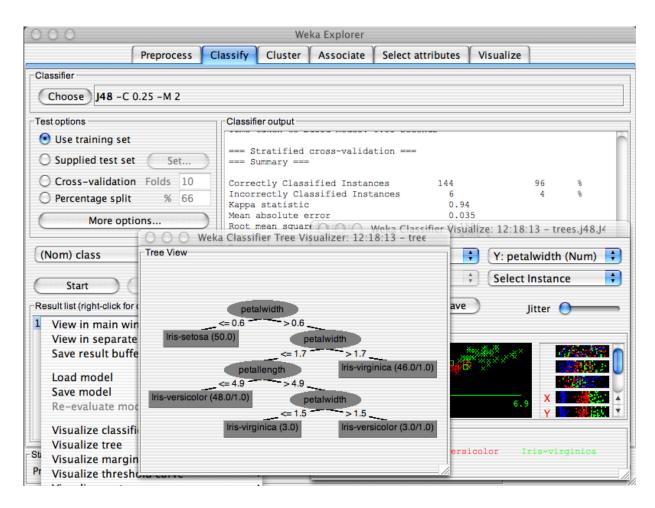
HPI Hasso Plattner Institut

Bayesian Networks



[1] http://research.microsoft.com/apps/pubs/?id=69588

Tools Weka



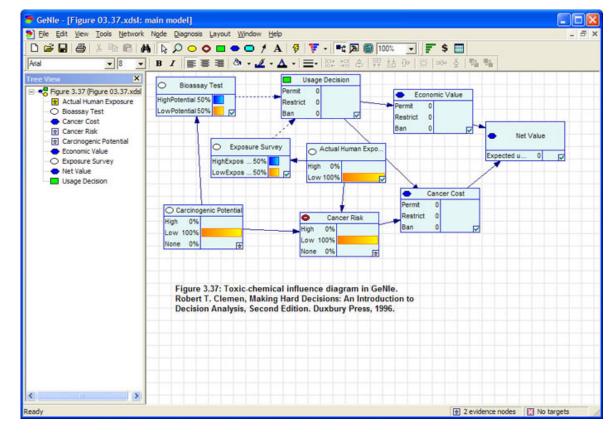
Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics

Hasso

Plattner

Institut

Tools GeNIe & SMILE



Solution

Risk factors for AKI

- Many factors have an influence on AKI
 - Comorbidities, genetic predispositions, dehydration, demographic characteristics ...
- Diagnosis with the help of analysis of urine output and/or serum creatinine
- Two main guidelines for the categorization of kidney injuries:
 - RIFLE & AKIN

15

AKIN is newer, thus more widespread

Data from MIMIC Database

- (Anonymized) Multiparameter Intelligent Monitoring in Intensive Care Database from PhysioNet contains:
 - Indications (code 584.9 for AKI)
 - Demographics
 - Lab results (most importantly creatinine values from blood/urine samples)
 - Comorbidities
 - (Medication)

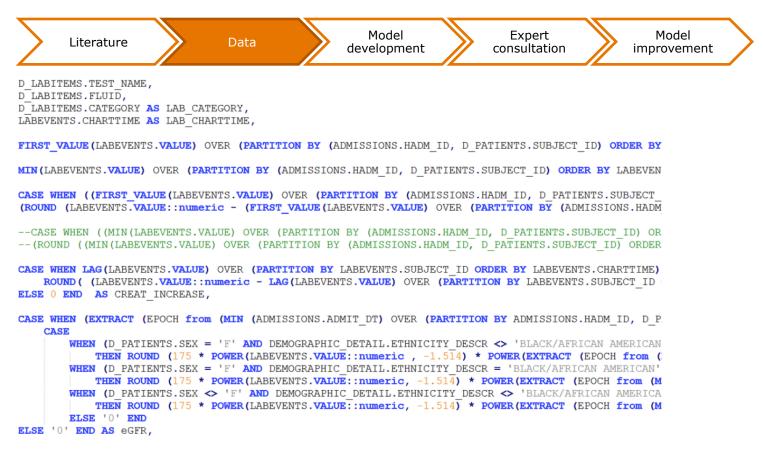
Data from MIMIC Database

SELECT ICD9.SUBJECT ID. D PATIENTS.SEX, D PATIENTS.DOB, D PATIENTS.DOD, DEMOGRAPHIC DETAIL,MARITAL STATUS DESCR. DEMOGRAPHIC_DETAIL.ETHNICITY_DESCR, DEMOGRAPHIC_DETAIL.OVERALL_PAYOR_GROUP_DESCR, DEMOGRAPHIC_DETAIL.RELIGION_DESCR, DEMOGRAPHIC_DETAIL.ADMISSION_TYPE_DESCR, DEMOGRAPHIC_DETAIL.ADMISSION_SOURCE_DESCR, MICROBIOLOGYEVENTS.DILUTION_AMOUNT, MICROBIOLOGYEVENTS.DILUTION COMPARISON, MICROBIOLOGYEVENTS.INTERPRETATION, D CODEDITEMS.CATEGORY AS CODEDITEMS CATEGORY, D_CODEDITEMS.LABEL AS CODEDITEMS_LABEL, MICROBIOLOGYEVENTS.CHARTTIME AS MICRO_TIME, LABEVENTS.VALUE, LABEVENTS.VALUEUOM, LABEVENTS.FLAG, D_LABITEMS.TEST_NAME, D_LABITEMS.FLUID, D_LABITEMS.CATEGORY AS LAB_CATEGORY, LABEVENTS.CHARTTIME AS LAB_CHARTTIME, MEDEVENTS.DO SE, MEDEVENTS.DOSEUOM, MEDEVENTS.SOLVOLUME, MEDEVENTS.SOLUNITS, MEDEVENTS.ROUTE, D MEDITEMS.LABEL AS MED LABEL, MEDEVENTS.CHARTTIME AS MED_CHARTTIME, IOEVENTS.VOLUME, IOEVENTS.VOLUMEUOM, D_IOITEMS.LABEL AS IO_LABEL, D_IOITEMS.CATEGORY AS IO_CATEGORY, IOEVENTS.CHARTTIME AS IO_CHARTTIME, COMORBIDITY_SCORES.CATEGORY, COMORBIDITY_SCORES.CONGESTIVE_HEART_FAILURE, COMORBIDITY_SCORES.CARDIAC_ARRHYTHMIAS, COMORBIDITY SCORES.VALVULAR DISEASE, COMORBIDITY SCORES.PULMONARY CIRCULATION, COMORBIDITY SCORES.PERIPHERAL VASCULAR, COMORBIDITY_SCORES.HYPERTENSION, COMORBIDITY_SCORES.PARALYSIS, COMORBIDITY_SCORES.OTHER_NEUROLOGICAL, COMORBIDITY SCORES.CHRONIC PULMONARY, COMORBIDITY SCORES.DIABETES UNCOMPLICATED, COMORBIDITY SCORES.DIABETES COMPLICATED, COMORBIDITY SCORES.HYPOTHYROIDISM, COMORBIDITY SCORES.RENAL FAILURE, COMORBIDITY SCORES.LIVER DISEASE, COMORBIDITY SCORES.PEPTIC ULCER, COMORBIDITY_SCORES.AIDS, COMORBIDITY_SCORES.LYMPHOMA, COMORBIDITY_SCORES.METASTATIC_CANCER, COMORBIDITY_SCORES.SOLID_TU MOR, COMORBIDITY_SCORES.RHEUMATOID_ARTHRITIS, COMORBIDITY_SCORES.COAGULOPATHY, COMORBIDITY_SCORES.OBESITY, COMORBIDITY_SCORES.WEIGHT_LOSS, COMORBIDITY_SCORES.FLUID_ELECTROLYTE, COMORBIDITY_SCORES.BLOOD_LOSS_ANEMIA, COMORBIDITY_SCORES.DEFICIENCY_ANEMIAS, COMORBIDITY SCORES.ALCOHOL ABUSE, COMORBIDITY SCORES.DRUG ABUSE, COMORBIDITY SCORES.PSYCHOSES, COMORBIDITY SCORES.DEPRESSION

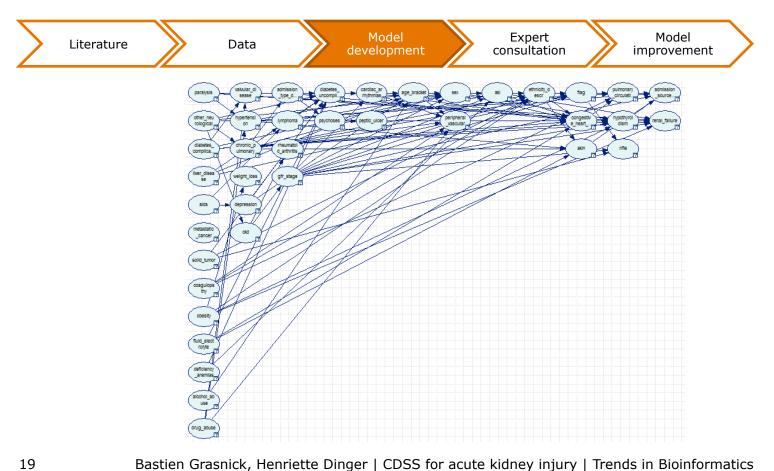
FROM ICD9 INNER JOIN MICROBIOLOGYEVENTS ON ICD9.SUBJECT_ID=MICROBIOLOGYEVENTS.SUBJECT_ID INNER JOIN D_CODEDITEMS ON MICROBIOLOGYEVENTS.SPEC_ITEMID=D_CODEDITEMS.ITEMID OR MICROBIOLOGYEVENTS.ORG_ITEMID=D_CODEDITEMS.ITEMID OR MICROBIOLOGYEVENTS.AB_ITEMID=D_CODEDITEMS.ITEMID INNER JOIN D_PATIENTS ON ICD9.SUBJECT_ID=D_PATIENTS.SUBJECT_ID INNER JOIN DEMOGRAPHIC_DETAIL ON ICD9.SUBJECT_ID=DEMOGRAPHIC_DETAIL.SUBJECT_ID INNER JOIN COMORBIDITY_SCORES ON ICD9.SUBJECT_ID=COMORBIDITY_SCORES.SUBJECT_ID INNER JOIN IOEVENTS ON ICD9.SUBJECT_ID=IOEVENTS.SUBJECT_ID INNER JOIN D_IOITEMS ON IOEVENTS.ITEMID=D_IOITEMS.ITEMID INNER JOIN MEDEVENTS ON ICD9.SUBJECT_ID=MEDEVENTS.SUBJECT_ID INNER JOIN D_MEDITEMS ON MEDEVENTS.ITEMID=D_MEDITEMS.ITEMID INNER J OIN LABEVENTS ON ICD9.SUBJECT_ID=LABEVENTS.SUBJECT_ID INNER JOIN D_LABITEMS ON LABEVENTS.ITEMID=D_LABITEMS.ITEMID WHERE ICD9.CODE = '584.9'

17 Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics

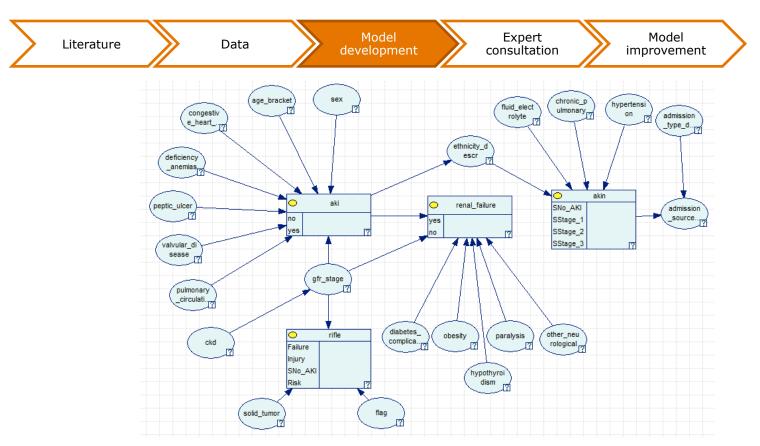
Data from MIMIC Database



Model



Model



Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics

Model - Statistics

- Two data sets for training and evaluation:
 - 6000 entries (50% AKIN (Stage 1,2 or 3), 50% no AKIN)
 - 9000 entries (33% AKIN (Stage 1,2 or 3), 67% no AKIN)

22

Accuracy for correct measured AKIN:

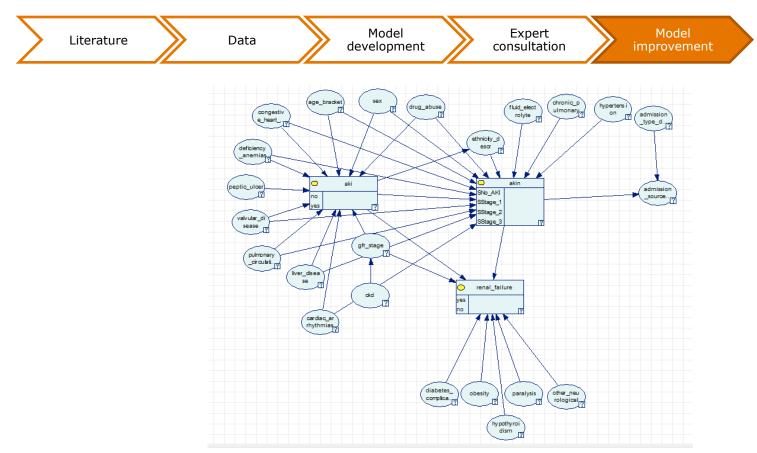
	GeNIe	Weka
6000	67%	58%
9000	73%	72%

Expert consultation

- Meeting at Charité with nephrologists (kidney experts)
- Discussion of the model and the dependencies
- Main insights:

- New influencing factors: e.g. weight, urethitis or medication history
- Time of comorbidities
- AKIN guideline is an improved version of RIFLE and can be omitted

Improved model



Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics

Improved model - Satistics

25

Accuracy for correct measured AKIN:

	GeNIe	Weka
6000	83%	76%
9000	86%	83%

Results

26

26.01.16

Results

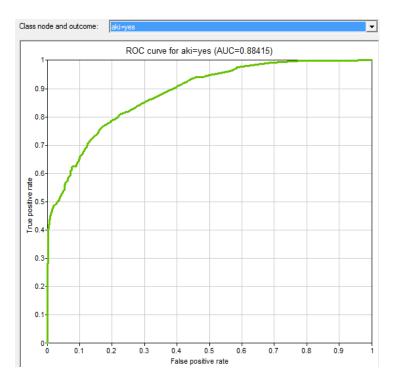
Accuracy before expert consultation:

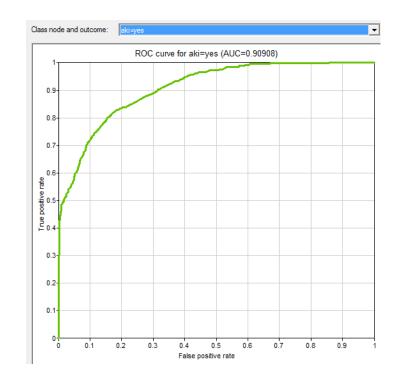
	GeNIe	Weka
6000	67%	58%
9000	73%	72%

Accuracy after expert consultation:

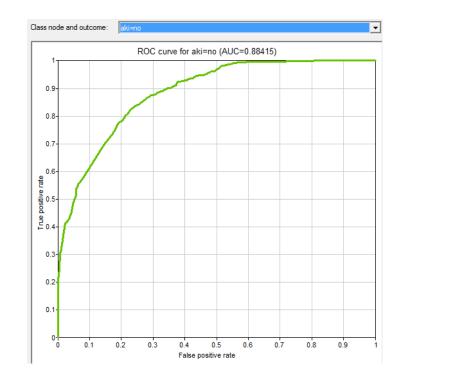
	GeNIe	Weka
6000	83%	76%
9000	86%	83%

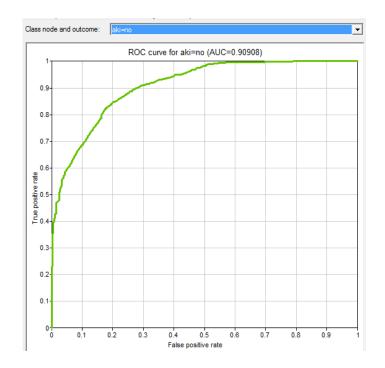
Results – ROC curve AKI





Results – ROC curve No AKI





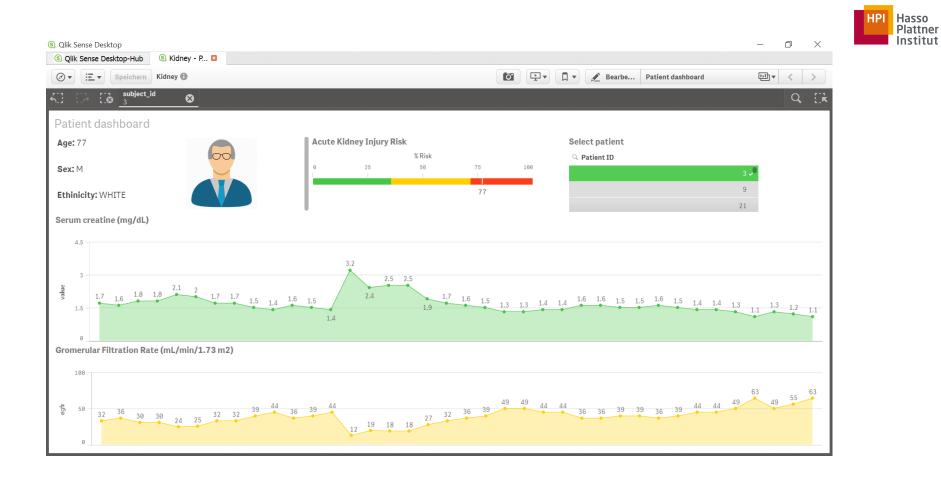
- Physicians welcome such projects in general, but are skeptical at first
- They would use a CDSS if proven helpful
- The system should be as unobtrusive as possible
- Nephrologists don't really need such a system since they recognize AKI because of their experience
- A better use case is the intensive care unit where no specialists are working

Further steps

Further steps

- Test in practice (e.g. Charité)
 - Model validation
 - Train with another, bigger data set with possibly different risk factors

- Build multiple user friendly frontends for different use cases
- Compare with other models (neural networks, trees, SVM, ...)



Demo with GeNIe

34

26.01.16

Questions

35

26.01.16

How many AKI patients will there possibly be in 2020?

• What are factors for AKI?

What are the two main guidelines for AKI?

Discussion

38

To what extent can intelligent machines be useful in healthcare?

 Who will be responsible if the CDSS makes a wrong prediction and a patient dies because of it?