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Background ﬂ it
Problem

= Acute kidney injury (AKI):
= Mostly asymptomatic
= High risk of death

= No trivial treatment

= Continuous monitoring of creatinine values required

= High amount of data
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Significance

Currently in Germany

= 70.000 patients / 2,5 Mio. EUR p.a.

= 100.000 patients by 2020

High risk of mortality

Very high medical costs for dialysis
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Background

Clinical Decision Support System (CDSS)
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“Clinical decision support systems (CDSS)
provide clinicians, staff, patients, and other
individuals with knowledge and person-
specific information, intelligently filtered
and presented at appropriate times, to
enhance health and health care”

Berner (2009)
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Goal
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Goal Plattner

= Develop a proof of concept in form of a Bayesian network for the identification
of AKI for future use in a clinical decision support system

Qlik Sense Desktop
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Bayesian Networks Inatiat

= Directed acyclic graph representing multiple random variables and their
conditional dependencies as probability functions
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Bayesian Networks
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Tools
Weka
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Tools

GeNIe & SMILE
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» GeNle - [Figure 03.37.xdsl: main model]
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Solution

Model Expert

development consultation
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Risk factors for AKI "
m Data >> devzllggﬁ'llent >> conEs)L?te;ttion >> imp?gc\)/%il'\ent >

= Many factors have an influence on AKI

= Comorbidities, genetic predispositions, dehydration, demographic
characteristics ...

= Diagnosis with the help of analysis of urine output and/or serum
creatinine

= Two main guidelines for the categorization of kidney injuries:

= RIFLE & AKIN

= AKIN is newer, thus more widespread
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> Literature m devzllggﬁ'llent >> ConEs)f.lplte;ttion >> Imprcl)c\)/%il‘lent >

= (Anonymized) Multiparameter Intelligent Monitoring in Intensive Care
Database from PhysioNet contains:

= Indications (code 584.9 for AKI)

= Demographics

= Lab results (most importantly creatinine values from blood/urine
samples)

= Comorbidities

= (Medication)
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Data from MIMIC Database ﬂ Fn'azsﬁES{

Model Expert Model

Literature development consultation improvement

SELECT ICD9.SUBJECT_ID, D_PATIENTS.SEX, D_PATIENTS.DOB, D_PATIENTS.DOD, DEMOGRAPHIC_DETAIL.MARITAL_STATUS_DESCR,
DEMOGRAPHIC_DETAIL.ETHNICITY_DESCR, DEMOGRAPHIC_DETAIL.OVERALL_PAYOR_GROUP_DESCR, DEMOGRAPHIC_DETAIL.RELIGION_DESCR,
DEMOGRAPHIC_DETAIL.ADMISSION_TYPE_DESCR, DEMOGRAPHIC_DETAIL.ADMISSION_SOURCE_DESCR, MICROBIOLOGYEVENTS.DILUTION_AMOUNT,
MICROBIOLOGYEVENTS.DILUTION_COMPARISON, MICROBIOLOGYEVENTS.INTERPRETATION, D_CODEDITEMS.CATEGORY AS CODEDITEMS_CATEGORY,
D_CODEDITEMS.LABEL AS CODEDITEMS_LABEL, MICROBIOLOGYEVENTS.CHARTTIME AS MICRO_TIME, LABEVENTS.VALUE, LABEVENTS.VALUEUOM, LABEVENTS.FLAG,
D_LABITEMS.TEST_NAME, D_LABITEMS.FLUID, D_LABITEMS.CATEGORY AS LAB_CATEGORY, LABEVENTS.CHARTTIME AS LAB_CHARTTIME, MEDEVENTS.DO SE,
MEDEVENTS.DOSEUOM, MEDEVENTS.SOLVOLUME, MEDEVENTS.SOLUNITS, MEDEVENTS.ROUTE, D_MEDITEMS.LABEL AS MED_LABEL, MEDEVENTS.CHARTTIME AS
MED_CHARTTIME, IOEVENTS.VOLUME, IOEVENTS.VOLUMEUOM, D_IOITEMS.LABEL AS IO_LABEL, D_IOITEMS.CATEGORY AS I0_CATEGORY, IOEVENTS.CHARTTIME AS
IO_CHARTTIME, COMORBIDITY_SCORES.CATEGORY, COMORBIDITY_SCORES.CONGESTIVE_HEART_FAILURE, COMORBIDITY_SCORES.CARDIAC_ARRHYTHMIAS,
COMORBIDITY_SCORES.VALVULAR _DISEASE, COMORBIDITY_SCORES.PULMONARY_CIRCULATION, COMORBIDITY_SCORES.PERIPHERAL_VASCULAR,
COMORBIDITY_SCORES.HYPERTENSION, COMORBIDITY_SCORES.PARALYSIS, COMORBIDITY_SCORES.OTHER_NEUROLOGICAL,
COMORBIDITY_SCORES.CHRONIC_PULMONARY, COMORBIDITY_SCORES.DIABETES_UNCOMPLICATED, COMORBIDITY_SCORES.DIABETES_COMPLICATED,
COMORBIDITY_SCORES.HYPOTHYROIDISM, COMORBIDITY_SCORES.RENAL_FAILURE, COMORBIDITY_SCORES.LIVER_DISEASE, COMORBIDITY_SCORES.PEPTIC_ULCER,
COMORBIDITY_SCORES.AIDS, COMORBIDITY_SCORES.LYMPHOMA, COMORBIDITY_SCORES.METASTATIC_CANCER, COMORBIDITY_SCORES.SOLID_TU MOR,
COMORBIDITY_SCORES.RHEUMATOID_ARTHRITIS, COMORBIDITY_SCORES.COAGULOPATHY, COMORBIDITY_SCORES.OBESITY, COMORBIDITY_SCORES.WEIGHT_LOSS,
COMORBIDITY_SCORES.FLUID_ELECTROLYTE, COMORBIDITY_SCORES.BLOOD_LOSS_ANEMIA, COMORBIDITY_SCORES.DEFICIENCY_ANEMIAS,
COMORBIDITY_SCORES.ALCOHOL_ABUSE, COMORBIDITY_SCORES.DRUG_ABUSE, COMORBIDITY_SCORES.PSYCHOSES, COMORBIDITY_SCORES.DEPRESSION

FROM ICD9 INNER JOIN MICROBIOLOGYEVENTS ON ICD9.SUBJECT_ID=MICROBIOLOGYEVENTS.SUBJECT_ID INNER JOIN D_CODEDITEMS ON
MICROBIOLOGYEVENTS.SPEC_ITEMID=D_CODEDITEMS.ITEMID OR MICROBIOLOGYEVENTS.ORG_ITEMID=D_CODEDITEMS.ITEMID OR
MICROBIOLOGYEVENTS.AB_ITEMID=D_CODEDITEMS.ITEMID INNER JOIN D_PATIENTS ON ICD9.SUBJECT_ID=D_PATIENTS.SUBJECT_ID INNER JOIN
DEMOGRAPHIC_DETAIL ON ICDS.SUBJECT_ID=DEMOGRAPHIC_DETAIL.SUBJECT_ID INNER JOIN COMORBIDITY_SCORES ON
ICD9.SUBJECT_ID=COMORBIDITY_SCORES.SUBJECT_ID INNER JOIN IOEVENTS ON ICD9.SUBJECT_ID=IOEVENTS.SUBJECT_ID INNER JOIN D_IOITEMS ON
IOEVENTS.ITEMID=D_IOITEMS.ITEMID INNER JOIN MEDEVENTS ON ICD9.SUBJECT_ID=MEDEVENTS.SUBJECT_ID INNER JOIN D_MEDITEMS ON
MEDEVENTS.ITEMID=D_MEDITEMS.ITEMID INNER J OIN LABEVENTS ON ICD9.SUBJECT_ID=LABEVENTS.SUBJECT_ID INNER JOIN D_LABITEMS ON
LABEVENTS.ITEMID=D_LABITEMS.ITEMID WHERE ICD9.CODE = '584.9'
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Data from MIMIC Database ottt

Model Expert Model

Literature development consultation improvement

D _LABITEMS.TEST_NAME,
D_LABITEMS.FLUID,

D_LABITEMS.CATEGORY AS LAB_ CATEGORY,
LABEVENTS.CHARTTIME AS LAB CHARTTIME,

FIRST VALUE (LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM ID, D PATIENTS.SUBJECT_ID) ORDER BY
MIN (LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM ID, D PATIENTS.SUBJECT_ ID) ORDER BY LABEVEN

CASE WHEN ((FIRST_VALUE (LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM ID, D PATIENTS.SUBJECT
(ROUND (LABEVENTS.VALUE: :numeric - (FIRST VALUE (LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM

--CASE WHEN ((MIN(LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM ID, D PATIENTS.SUBJECT ID) OR
——(ROUND ((MIN(LABEVENTS.VALUE) OVER (PARTITION BY (ADMISSIONS.HADM ID, D PATIENTS.SUBJECT ID) ORDER

CASE WHEN LAG(LABEVENTS.VALUE) OVER (PARTITION BY LABEVENTS.SUBJECT_ ID ORDER BY LABEVENTS.CHARTTIME)
ROUND ( (LABEVENTS.VALUE: :numeric - LAG(LABEVENTS.VALUE) OVER (PARTITION BY LABEVENTS.SUBJECT_ ID
ELSE 0 END AS CREAT INCREASE,

CASE WHEN (EXTRACT (EPOCH from (MIN (ADMISSIONS.ADMIT DT) OVER (PARTITION BY ADMISSIONS.HADM ID, D P

CASE

WHEN (D_PATIENTS.SEX = 'F' AND DEMOGRAPHIC DETAIL.ETHNICITY DESCR <> 'BLACK/AFRICAN AMERICAN
THEN ROUND (! /5 * POWER(LABEVENTS.VALUE: :numeric , -1.514) * POWER(EXTRACT (EPOCH from (
WHEN (D_PATIENTS.SEX = 'F' AND DEMOGRAPHIC DETAIL.ETHNICITY DESCR = 'BLACK/AFRICAN AMERICAN'
THEN ROUND (! /5 * POWER(LABEVENTS.VALUE: :numeric, -1.514) * POWER(EXTRACT (EPOCH from (M
WHEN (D_PATIENTS.SEX <> 'F'' AND DEMOGRAPHIC_ DETAIL.ETHNICITY DESCR <> 'BLACK/AFRICAN AMERICA
THEN ROUND (175 * POWER(LABEVENTS.VALUE: :numeric, -1.514) * POWER(EXTRACT (EPOCH from (M

ELSE '0' END

ELSE '0' END AS eGFR,
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Literat Dat Model Expert Model
Iterature ata development consultation improvement
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Literatur Dat Model Expert Model
erature ata development consultation improvement
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Model - Statistics Inatitut
. Model Expert Model

> Literature >> Data consultation >> improvement >

= Two data sets for training and evaluation:
= 6000 entries (50% AKIN (Stage 1,2 or 3), 50% no AKIN)
= 9000 entries (33% AKIN (Stage 1,2 or 3), 67% no AKIN)
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Model - Statistics ﬂ.‘;':ﬁ?:{

Accuracy for correct measured AKIN:

6000 67% 58%
9000 73% 72%
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Expert consultation

Literat Dat Model Expert Model
Iterature ata development consultation improvement

= Meeting at Charité with nephrologists (kidney experts)

= Discussion of the model and the dependencies

= Main insights:

= New influencing factors: e.g. weight, urethitis or medication history

= Time of comorbidities

= AKIN guideline is an improved version of RIFLE and can be omitted
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Improved model

Literature Data Model Expert Model
development consultation improvement
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Improved model - Satistics ﬂ.‘;':ﬁ?s{

Accuracy for correct measured AKIN:

6000 83% 76%
9000 86% 83%
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Results ﬂﬂ:ﬁ?ﬁ:

Accuracy before expert consultation:

6000 67% 58%
9000 73% 72%

Accuracy after expert consultation:

6000 83% /6%
9000 86% 83%
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Results — ROC curve ﬂl’n':%‘n":;‘{
AKI
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Results — ROC curve Platiner
No AKI

Class node and outcome: < Class node and outcome:  [ETgt) -
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Results Inatitut

= Physicians welcome such projects in general, but are skeptical at first
= They would use a CDSS if proven helpful
= The system should be as unobtrusive as possible

= Nephrologists don’t really need such a system since they recognize AKI
because of their experience

= A better use case is the intensive care unit where no specialists are
working
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Further steps “ Inatitut

= Test in practice (e.g. Charité)
= Model validation
= Train with another, bigger data set

with possibly different risk factors

= Build multiple user friendly frontends for different use cases

= Compare with other models (neural networks, trees, SVM, ...)
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@& Qlik Sense Desktop _
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Demo with GeNIe
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Questions
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Questions

= How many AKI patients will there possibly be in 20207

= \What are factors for AKI?

= What are the two main guidelines for AKI?
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Discussion
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Discussion ﬂ Mottt

= To what extent can intelligent machines be useful in healthcare?

= Who will be responsible if the CDSS makes a wrong prediction and a
patient dies because of it?

38 Bastien Grasnick, Henriette Dinger | CDSS for acute kidney injury | Trends in Bioinformatics 26.01.16



