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Agenda
● The basics
● History of DNA Sequencing Technologies
● RNA-Seq and Variant Calling Pipelines
● Clustering on mixed data
● Hands-on: Variants in practice
● Ethics discussion



The basics
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The basics
● RNA sequencing expression

○ differences in mapped reads between different samples → compare the amount of specific 
genes

○ quantitative data

● Variant Calling: DNA vs. RNA
○ DNA sequencing: analytically complex and not very efficient
○ RNA sequencing: cheaper, and, because of the traditionally used RNA sequencing expression 

analysis, the data is already there
■ → Variant Calling on RNA Data
■ but: beware that RNA only contains genes expressed in the analyzed cells, not the 

whole genome
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The basics
Variants

→ differences in genes, according to a reference genome

● SNPs (Single Nucleotide Polymorphisms) vs CNVs (Copy Number Variant)
● Risk Variants vs Protective Variants
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History of Genetics
Relatively short history is basis for our current understanding

● 1869: Nucleic acid
● 1919: Polynucleotide model: four bases, sugar, phosphate
● 1944: Genes
● 1954: Structure of the Deoxyribonucleic acid (DNA)
● 1984: Initial Idea of the “Human Genome Project”
● 2000: First Draft of HG
● 2003: HG completely sequenced
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DNA Sequencing Technologies
Human Genome: 3.2 Gbp (Million basepairs)

● First Generation Sequencing (ABI 2002): Human Genome Project
○ Very high accuracy (> 99.99%)
○ Slow processing (1 run = 100kbp, 3h)

● Next Generation Sequencing: Illumina (2006): Today’s Standard
○ Acceptably high accuracy (> 99.9%)
○ 2006: 1Gbp / run, 2016: 1 Tbp / run (6 days)
○ Short read length: 200-400bp, later up to 700bp → fragmented output!

● Pacific Biosciences: Third Generation Sequencing (2013)
○ Long read sequencing: 60kbp (“DeNovo Alignment”)
○ Accuracy > 99% (!)
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Illumina Sequencing Process (simplified)
1) Preparation

○ Fragmentation of DNA into chunks (“reads”)
○ Required to be able to read sequence
○ 200-800 bp (3.2 Gbp in Human Genome!)

2) Amplification
○ Generate readable DNA regions (clusters)

3) Sequencing
○ Light reflected differently by each nucleotide
○ Record laser light reflection image
○ Generate textual output from recorded image
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RNA-Seq based Pipelines
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Short Read Alignment
● Sequenced RNA: Many small RNA chunks (reads)
● Locate related position in the reference genome

○ Could be anywhere in the coding regions
○ Many highly similar regions within the DNA
○ Related coding DNA part may contain non-coding (irrelevant) parts
○ Editing events occur at specific regions/genes

● Process aligned reads
○ Probably many reads for same locations
○ Partly overlapping reads
○ Contradictory information
○ Apply statistical methods
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Proteine Quantification Pipeline

● Multiple input samples (e.g., two conditions, healthy, ill)
● Transcriptome: set of all mRNA in a cell

(≈ genes expressed in that cell)
● Differential Expression

Differences of mRNA quantities between the samples

Mapped 
Reads

Link and 
Merge

Differential
ExpressionTranscriptome Diff Visualization, 

Analysis, ...
Mapped 
Reads

12



RNA-Seq based Variant Calling

● Filtering
○ Deduplication
○ Remove low-quality reads (defined 

by sequencing device)
○ Filter unmapped reads
○ Filter low quality reads/mappings

Mapped 
Reads

Filtering Raw 
Variants

Variant 
Calling Postprocessing Confident 

Variants

● Variant Calling
○ Find deviation from reference genome

● Postprocessing
○ Separate Variants from Indels
○ Filter low-quality variants
○ Filter false-positive variants
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RNA-Seq based Variant Calling Pipelines
SNPiR: “Reliable Identification of Genomic Variants from RNA-Seq Data” [Piskol 2013]

● High sensitivity
○ Loose criteria in variant calling step

● High specificity
○ Extensive filtering to omit false-positives

● Based on tools optimized for DNA-Seq Data

GATK Best-Practices: “Calling variants in RNAseq” [2014-2017]

● Built on newer tools, specialized for RNA-Seq Data
● Including some concepts of SNPiR
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● Genome consists of 
exons (coding) and
introns (non-coding)

● Splicing: removal of introns,
joining of adjacent exons

● Not all splice junctions are known

● How to align reads across
splice junctions?

Alignment Across Splice Junctions
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Alignment Across Splice Junctions
● Alignment to genome only?

○ Algorithm would probably find a similar 
(wrong) location

● Alignment to transcriptome only?
○ Transcriptome may not be complete

● Combined approach!
○ Align to Genome
○ + known parts of the transcriptome
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GATK: Two-Pass Alignment
● Using STAR aligner

○ State-of-the-art for RNA-Seq data

● Option: “2-pass STAR”
○ Detect splice junctions in first run
○ Use generated information in second run 

→ final alignment

● Not using previously known splice 
junctions

○ No additional data dependencies
○ Missing information?
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[USCS Genome Browser: Genomes + Annotations]

RepeatMasker Annotation

● Genome contains highly repetitive regions
● Controlling transcriptions, immunity against foreign DNA, …
● Generally non-coding
● Difficult/impossible to correctly align reads to

Filtering based on Genome Annotation
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RNA Editing Sites

● Nucleotide sequence differs 
from original sequence in 
DNA

● Complicates read alignment
● Differences must not be 

interpreted as variants

Filtering based on Genome Annotation
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[https://en.wikipedia.org/wiki/RNA_editing]



● Heavily used by SNPiR
○ Pseudo-Chromosomes
○ Post-processing after variant calling

● Not part of the GATK-Pipeline
○ Relying on advanced, specialized tools
○ Not relying on previously known data

● Apply SNPiR filtering to GATK-Pipeline?
○ Focus on human genome: rich information available
○ Filtering most reliable variants based on all known data

Filtering based on Genome Annotation
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Statistical Filtering Strategies
● Statistical decisions in whole pipeline

○ Quality scores for alignment (depth, certainty)
○ Quality scores for called variant
○ Uncertainties in reference genome, two DNA strands, …

● Quality score evaluation requires reference scores
○ “Base quality score recalibration”
○ Data available for DNA-Seq
○ Not yet available for RNA-Seq

● Evaluation using known DNA-Seq variants
○ Currently most reliable way to verify tools and pipelines
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Raw Sequencing Data: FASTQ Files
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VCF: Variant Call Format
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[Vishuo Pte Ltd, 2014, http://vishuo.com/new/the-variant-call-format-and-vcftools]



How to make sense of the data
open question: What do newly sequenced genes do? 

● infer correlations between different genes - allowing for example the building 
of classifiers to improve diagnosis, ...

other general use cases for clustering in bioinformatics: 

● complexity reduction
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How to make sense of the data
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Main Principles: Homogeneity, Separation

very intuitive for us in 2-D

Problem: n-dimensional data 

● curse of dimensionality

Clustering
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maximation

Decision 
Tree
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Example Hierarchical Clustering

1. Every node is assigned its own cluster

2. Find the closest pair of nodes and merge them 

into a cluster

3. Repeat step 2, until all nodes in the network 

have been merged into a single large cluster

4. Choose a useful clustering threshold between 

the bottom and top levels
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Example Hierarchical Clustering

How do you compute the distance between clusters? 

● Single-link: merge two clusters with the smallest 

minimum pairwise distance

● Average-link: merge two clusters with the 

smallest average pairwise distance

● Maximum-link or Complete-link: merge the two 

clusters with the smallest maximum pairwise 

distance
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Example K-means

The main idea is to define k centroids, one for 
each cluster.

1. Select k entities as the initial centroids
2. (Re)Assign all entities to their closest 

centroids
3. Recompute the centroid of each newly 

assembled cluster
4. Repeat step 2 and 3 until the centroids 

do not change or until the maximum 
value for the iterations is reached
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Example K-means

advantages: 

● simple, fast, efficient (O(n))

disadvantages:

● difficult to predict K, often produces clusters 
of uniform size, spherical assumption
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Handling Mixed Data
Clustering so far is almost exclusively done on quantitative data

Now: adding Variants (qualitative data) → mixed Data

Main Problem: How to compute distances?

35



Clustering - Distance measures

36



Gower Similarity
compares two cases i and j

● Sijk: contribution provided by the k-th 
variable

● wijk: 1 or 0 depending on the 
comparison

basically case distinction depending on 
variable type
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Gower Similarity

ordinal/continuous variables: 

rk is range of values for the k-th variable
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Gower Similarity

nominal variables: Sijk = 1 if Xik = Xjk or 0 if Xik != Xjk 
wjk = 1 if both cases have observed states for k

39



Gower Similarity

binary values
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Multiple Factor Analysis

It may be seen as an extension of:

● Principal component analysis (PCA) when variables are quantitative,
● Multiple correspondence analysis (MCA) when variables are qualitative,
● Factor analysis of mixed data (FAMD) when the active variables belong to the 

two types.
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Multiple Factor Analysis
PCA

42

MCA: also a dimension reducing method; it represents the 
data as points in 2- or 3-dimensional space.

indicator matrix or burt table
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Clustering results - now what?
We will hopefully see some patterns that we can associate with diseases / known 
issues

To prove this, we can, for example, look at the Variants that got clustered together 
and check whether they are associated with similar problems
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Hands-On: Genome Browser
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