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The basics

e RNA sequencing expression
o differences in mapped reads between different samples — compare the amount of specific
genes
o quantitative data

e Variant Calling: DNA vs. RNA

o DNA sequencing: analytically complex and not very efficient
o RNA sequencing: cheaper, and, because of the traditionally used RNA sequencing expression
analysis, the data is already there
m — Variant Calling on RNA Data
m but: beware that RNA only contains genes expressed in the analyzed cells, not the
whole genome



The basics

Variants

— differences in genes, according to a reference genome

Natalie ATA TGA TCAACACTT

steven ATA TGA TCA ACAGTT

e SNPs (Single Nucleotide Polymorphisms) vs CNVs (Copy Number Variant)
e Risk Variants vs Protective Variants



History of Genetics

Relatively short history is basis for our current understanding

1869: Nucleic acid

1919: Polynucleotide model: four bases, sugar, phosphate
1944 Genes

1954: Structure of the Deoxyribonucleic acid (DNA)

1984: Initial Idea of the “Human Genome Project’

2000: First Draft of HG

2003: HG completely sequenced



DNA Sequencing Technologies

Human Genome: 3.2 Gbp (Million basepairs)

e First Generation Sequencing (ABI 2002): Human Genome Project
o Very high accuracy (> 99.99%)
o  Slow processing (1 run = 100kbp, 3h)
e Next Generation Sequencing: lllumina (2006): Today’s Standard
o Acceptably high accuracy (> 99.9%)
o 2006: 1Gbp /run, 2016: 1 Tbp / run (6 days)
o Short read length: 200-400bp, later up to 700bp — fragmented output!
e Pacific Biosciences: Third Generation Sequencing (2013)

o Long read sequencing: 60kbp (“DeNovo Alignment”)
o Accuracy > 99% (!)



lllumina Sequencing Process (simplified)

1) Preparation

o Fragmentation of DNA into chunks (“reads”)

o Required to be able to read sequence

o 200-800 bp (3.2 Gbp in Human Genome!)
2) Amplification

o Generate readable DNA regions (clusters)
3) Sequencing

o Light reflected differently by each nucleotide

o Record laser light reflection image
o Generate textual output from recorded image

[https.//www.illumina.com/systems/array-scanners/nextseq-550.html, illumina, 2017] o



lllumina Sequencing Process (simplified)

1) Preparation
o Fragmentation of DNA into chunks (“reads”)

o Required to be able to read sequence
o 200-800 bp (3.2 Gbp in Human Genome!)

2) Amplification Sequencing Cydes( )

o Generate readable DNA regions (clusters)

3) Sequencing
o Light reflected differently by each nucleotide
o Record laser light reflection image
o Generate textual output from recorded image

Digital Image
Data is exported to an output file l

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...

[An Introduction to Next-Generation Sequencing Technology, illumina, 2016] =~ Cster4>Read 4:ATRC... " Text Filg



RNA-Seq based Pipelines

Reference

Genome

Alignment > Mapped
Reads

RNA-Seq
Reads

Quantification > Expression
Data

Variant Calling > u
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Short Read Alignment

e Sequenced RNA: Many small RNA chunks (reads)

e | ocate related position in the reference genome
o Could be anywhere in the coding regions
o  Many highly similar regions within the DNA
o Related coding DNA part may contain non-coding (irrelevant) parts
o Editing events occur at specific regions/genes

e Process aligned reads
o Probably many reads for same locations
o Partly overlapping reads
o Contradictory information
o  Apply statistical methods

mRNA



Proteine Quantification Pipeline

e
Mapped
Reads

—
—

Mapped

Link and
Merge

)

Reads

Transcriptome

Y

A

Differential
Expression

e Multiple input samples (e.g., two conditions, healthy, ill)
e Transcriptome: set of all MRNA in a cell
(= genes expressed in that cell)

e Differential Expression
Differences of mMRNA quantities between the samples

Visualization,
Analysis, ...

)




RNA-Seq based Variant Calling

Mapped Filtering \Cl:ari_ant Raw Postprocessing Confident
Reads alling Variants Variants
e Filtering e Variant Calling
o Deduplication o Find deviation from reference genome
o Remove low-quality reads (defined
by sequencing device) e Postprocessing

Filter unmapped reads
Filter low quality reads/mappings

o Separate Variants from Indels
o Filter low-quality variants
o Filter false-positive variants
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RNA-Seq based Variant Calling Pipelines

SNPIR: “Reliable Identification of Genomic Variants from RNA-Seq Data” [Piskol 2013]

e High sensitivity
o Loose criteria in variant calling step
e High specificity
o Extensive filtering to omit false-positives
e Based on tools optimized for DNA-Seq Data

GATK Best-Practices: “Calling variants in RNAseq” [2014-2017]

e Built on newer tools, specialized for RNA-Seq Data
e Including some concepts of SNPIR
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DATACLEANUP >  VARIANT DISCOVERY [ EVALUATION

Analysis-Ready
Variants & Indels

[ Raw RNA:ieq Reads) cooce [ Analysis-Ready RNAseq Reads ]
!

Map to Reference

= : Variant Calling :
< STAR 2-pass . _ :
Q') . HC in RNAseq mode E S
c - L .
o Mark Duplicates . . :
T - L]
' . Raw : Variant
: [Variants [ aNFs ] [ Indels ] : [Annotation]
Split’N’Trim - J .
+ReassignMappingQuality E l l . i
: Variant Filteri : : .
[ Indel Realignment J : ariant riitering : (Vanant Evaluatlon}
v E RNAseq-specific settings E look good?
[ Base Recalibration ] : : ‘J\‘
Analysis -Ready |........0 | (lered [ SNPs ] [ Indels] ® ©
RNAseq Reads troubleshoot use in project

[https://software.broadinstitute.org/gatk/quide/article ?id=3891 2017] 1




Alignment Across Splice Junctions

Genome consists of

exons (coding) and

introns (non-coding)
Splicing: removal of introns,
joining of adjacent exons

Not all splice junctions are known

How to align reads across
splice junctions?

GENE

T

| Intron Q%Intron ? ntron?

Amino acid
Change

Protein
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Alignment Across Splice Junctions

e Alignment to genome only?

GENE SNP
o  Algorithm would probably find a similar \
(wrong) location

e Alignment to transcriptome only? I I I I I I I I I I I I

o Transcriptome may not be complete

Intron | Exon | Intron | Exon | Intron | Exon

e Combined approach!

o Align to Genome

o + known parts of the transcriptome

Protein

Amino acid
Change 17




GATK: Two-Pass Alignment

e Using STAR aligner
o State-of-the-art for RNA-Seq data

SNP j
o Detect splice junctions in first run

o Use generated information in second run
, : Intron | Exon | Intron | Exon | Intron | Exon
— final alignment
e Not using previously known splice
junctions

o No additional data dependencies
o  Missing information? Protein

GENE

Amino acid
Change 18




Filtering based on Genome Annotation

[USCS Genome Browser: Genomes + Annotations]
RepeatMasker Annotation

Genome contains highly repetitive regions

Generally non-coding
Difficult/impossible to correctly align reads to

Controlling transcriptions, immunity against foreign DNA, ...
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Filtering based on Genome Annotation

Addition of Uracil to RNA

RNA Editing Sites
b G G L b DT GG AT D LG A b L O G e T AL G L G VA

e Nucleotide sequence differs }
Transcription of DNA o Pre-edited RNA
from origina| sequence in wAGCUGCCAAUUGCGCAUUCCAACCGGAUACGCG.. Pre-edited
RNA
DNA
‘ruide RNA gives template forediting
® Compllcates read allgnment oA onIIAACCGAACGIIAS GAGITITGEOCILAITLG gENA
e Differences must not be WAGCUGCCAAUUGC GCAUUC CAACCGGAUAC . Pre-sdited
. : RNA
interpreted as variants l

Editing of pre-mRNA
ot GLIG LLA LT LG ITG AT TC LA AL CEGATAL e Edited RNA

!

[https://en.wikipedia.org/wiki/RNA _editing]

Translation to protein ar other pathway



Filtering based on Genome Annotation

e Heavily used by SNPiR

o Pseudo-Chromosomes
o Post-processing after variant calling

e Not part of the GATK-Pipeline

o Relying on advanced, specialized tools
o Not relying on previously known data

e Apply SNPIR filtering to GATK-Pipeline?
o Focus on human genome: rich information available
o Filtering most reliable variants based on all known data

21



Statistical Filtering Strategies

e Statistical decisions in whole pipeline
o  Quality scores for alignment (depth, certainty)
o  Quality scores for called variant
o Uncertainties in reference genome, two DNA strands, ...

e Quality score evaluation requires reference scores

o “Base quality score recalibration”
o Data available for DNA-Seq
o Not yet available for RNA-Seq

e Evaluation using known DNA-Seq variants
o  Currently most reliable way to verify tools and pipelines
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Raw Sequencing Data: FASTQ Files

@SRR831012.1 HWI-ST155_0742:7:1101:1284:1981/1 @SamplelID.ReadNr
NGAGATGAAGCACTGTAGCTTGGAATTCTCGGGTGCCAAGGAACTCCAGT
D Experimental Setup

% 1=DDDFFHHHGFIHHIIIIIIIIIIIIITIITEHIIIITITIFIIIIINI
In our setting:

- ~1.4 GB per file
@SRR831012.2 HWI-ST155_0742:7:1101:2777:1998/1 - ~8 Mio reads per file

NGAGATGAAGCACTGTAGCTCTTTGGAATTCTCGGGTGCCAAGGAACTCC  _ go files
+
%1=DFFFFHHHHHIIIIIIIIIIIIIIIIIIGIIIIIIIIIIIIIG

RNAseq Intro

Quality score (increasing from worst to best): Milena Kraus, Apr
I"#$%8&'()*+,-./0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijkimnopgrstuvwxyz{ |}~ LrA0te
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VCF: Variant Call Format

Example
( ##fileformat=VCFv4.0 = Mandatory header lines
##TileDate=20100707
##source=VCFtools
##reference=NCBI36 Optional header lines (meta-data
@ ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allel£"> about the annotations in the VCF body)
B | ##INFO=<ID=HZ,Number=0,Type=Flag,Description="HapMap2 membersfip™>
o { ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype)}
= ##FORMAT=<ID=GQ,Number=1, Type=Integer,Description="Genotygde Quality (phred score)">
b ##FORMAT=<ID=GL ,Number=3, Type=Float,Description="LikeliHoods for RR,RA,AA genotypes (R=ref,A=alt)">
> ##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Re#Zd Depth">
##ALT=<ID=DEL ,Description="Deletion">
##INFO=<ID=SVTYPE,Number=1, Type=String,Descriptiga="Type of structural variant">
##INFO=<ID=END,Number=1, Type=Integer,Description="End position of the variant"> —
\ #CHROM POS ID  REF ALT  QUAL FILTER INFO FORMAT ~ SAMPLEL SAMP Heftarence alietas [l
- (1 T ACG_ A,AT . PASS - GT:DP 1/2:13 0/0:29
o 1 2 st T G PASS H2; AA=T GT:GQ 0]1:100 2/2J0
o 1 S A G . ASS : GT:GQ |@:77 119
1 100 <DEL> P SVTYPE=DEL ; END=300 GT:GQ:DP f1:12:350/0:206 Alternate alleles (GT>0 is
an index to the ALT column)
Deletion SNP T Insertion Other event Phased data (G and C above
Large SV are on the same chromosome)

[Vishuo Pte Ltd, 2014, http.//vishuo.com/new/the-variant-call-format-and-vcftools] #




How to make sense of the data

open question: What do newly sequenced genes do?

e infer correlations between different genes - allowing for example the building
of classifiers to improve diagnosis, ...

other general use cases for clustering in bioinformatics:

e complexity reduction

25



How to make sense of the data

L =
%ﬁ.ﬂmﬁﬁ ,ﬁ!ﬁ}hﬁ% T‘ it i i " ‘- r ! 'T'IMMPJ mﬁ!ﬁ?‘ M'Mﬁh
Sel ion of Reguiation o transcrption  Cell ol phase Iminune response el achesion

W

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA
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Clustering

Main Principles: Homogeneity, Separation

very intuitive for us in 2-D
Problem: n-dimensional data

e curse of dimensionality

27



Types of

Clustering
{ Hierarchical Partitional
Agalomerative Divisive Error Graph Density Model
99 Minimization theoretic based based

minimal
Spanning
Tree

expectation

K-means . )
maximation

Decision
bottom-up Top-down C‘I’ree/
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Types of
Clustering

Agalomerative Divisive Error Graph Density Model
99 Minimization theoretic based based

minimal
Spanning
Tree

expectation

K-means . )
maximation

Decision
e @ Q/
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Example Hierarchical Clustering

Every node is assigned its own cluster Over-Clustered Data A, B.C.D, E,F

Find the closest pair of nodes and merge them

into a cluster m m
Potentially Useful

have been merged into a single large cluster @

Repeat step 2, until all nodes in the network Cluster Assignments
Choose a useful clustering threshold between
e bttom and top v maseesn (1) () (© ©) D @



Example Hierarchical Clustering

How do you compute the distance between clusters? .. cjctered Data ﬁu B,C,D,EF

Potentially Useful
e Maximum-link or Complete-link: merge the two

e Single-link: merge two clusters with the smallest
minimum pairwise distance @ m
e Average-link: merge two clusters with the Cluster Assignments
smallest average pairwise distance @ o @
clusters with the smallest maximum pairwise Undustered Data ® o @ @ @
distance



Types of

Clustering
{ Hierarchical Partitional
Agalomerative Divisive Error Graph Density Model
99 Minimization theoretic based based

minimal
Spanning
Tree

expectation
maximizing

Decision
bottom-up Top-down QG/
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Example K-means

The main idea is to define k centroids, one for : :0 °. ®
each cluster. ® a® - &
e % o
1. Select k entities as the initial centroids °.. - -
2. (Re)Assign all entities to their closest : ®e =
centroids o
3. Recompute the centroid of each newly e o
assembled cluster ..’:
4. Repeat step 2 and 3 until the centroids oy * ;
do not change or until the maximum * ¢

”0 &
value for the iterations is reached = ceo"®
e
®

33



Example K-means

advantages:

simple, fast, efficient (O(n))
disadvantages:

e difficult to predict K, often produces clusters

of uniform size, spherical assumption

34



Handling Mixed Data

Clustering so far is almost exclusively done on quantitative data
Now: adding Variants (qualitative data) — mixed Data

Main Problem: How to compute distances?

35



Clustering - Distance measures




Gower Similarity

compares two cases i and j

e Sijk: contribution provided by the k-th
variable

e wijk: 1 or O depending on the
comparison

basically case distinction depending on
variable type

T
E wi?ijijk
k

Si‘j =

T

E Wik

37



Gower Similarity

ordinal/continuous variables:

rk is range of values for the k-th variable

Tl
Z wiijijk
k
Sij = —=
> Wijk
k
\%‘k — Tjk
Sijpg =1— "
k

38



Gower Similarity

nominal variables:

T
s B wiijijk
k
Sij =

T
Z Wijk
k

Sijk = 1 if Xik = Xjk or 0 if Xik != Xjk
wjk = 1 if both cases have observed states for k

39



Gower Similarity

binary values

Value of
attribute &
4= | =

T
110

1 |1
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Multiple Factor Analysis

It may be seen as an extension of:

e Principal component analysis (PCA) when variables are quantitative,

e Multiple correspondence analysis (MCA) when variables are qualitative,

e Factor analysis of mixed data (FAMD) when the active variables belong to the
two types.

41


https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Multiple_correspondence_analysis
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https://en.wikipedia.org/wiki/Factor_analysis_of_mixed_data
https://en.wikipedia.org/wiki/Factor_analysis_of_mixed_data

Multiple Factor Analysis

PCA MCA: also a dimension reducing method:; it represents the
data as points in 2- or 3-dimensional space.

indicator matrix or burt table
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Step 1: K'tables of J, variables collected on the same observations
J1.1 e J1.k Jk.1 T Jk.k JK.1 U JK.k

A HReH K

Step 2: Compute generalized PCA on each of the K'tables (where
Y is the first singular value of each table)

J1.1 T J1.k Jk.1 T Jk.k JK.1 T JK.k

XXX

GPCA GPCA GPCA

A

/

n
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Step 3: Normalize each table by dividing by its first singular value (Y)

A

X
X

i
Y
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Step 4: Concatenate the K normalized tables

Step 5: Compute a generalized PCA on the concatenated table

(o .-J(
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Clustering results - now what?

We will hopefully see some patterns that we can associate with diseases / known
issues

To prove this, we can, for example, look at the Variants that got clustered together
and check whether they are associated with similar problems
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Hands-On: Genome Browser
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